Question #223814

∫0^{3}(3+2t^{2}𝛿(t-2)dt


1
Expert's answer
2021-08-09T08:04:34-0400

03(3+2t2)(t2)dt=0394t432t2(t2)dtIfexistb,a<b<c,f(b)=undefined,acf(x)dx=abf(x)dx+bcf(x)dx=03294t432t2(t2)dt+32394t432t2(t2)dt=46+278=46278=46+278+46278=0\int _0^3\left(3+2t^2\right)\left(t-2\right)dt\\ =\int _0^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\ \mathrm{If\:exist}\:b,\:a<b<c,\:f\left(b\right)=\mathrm{undefined},\:\int _a^c\:f\left(x\right)dx=\int _a^b\:f\left(x\right)dx+\int _b^c\:f\left(x\right)dx\\ =\int _0^{\sqrt{\frac{3}{2}}}\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt+\int _{\sqrt{\frac{3}{2}}}^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\ =-4\sqrt{6}+\frac{27}{8}\\ =4\sqrt{6}-\frac{27}{8}\\ =-4\sqrt{6}+\frac{27}{8}+4\sqrt{6}-\frac{27}{8}\\ =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS