∫0^{3}(3+2t^{2}𝛿(t-2)dt
∫03(3+2t2)(t−2)dt=∫039−4t43−2t2(t−2)dtIf exist b, a<b<c, f(b)=undefined, ∫ac f(x)dx=∫ab f(x)dx+∫bc f(x)dx=∫0329−4t43−2t2(t−2)dt+∫3239−4t43−2t2(t−2)dt=−46+278=46−278=−46+278+46−278=0\int _0^3\left(3+2t^2\right)\left(t-2\right)dt\\ =\int _0^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\ \mathrm{If\:exist}\:b,\:a<b<c,\:f\left(b\right)=\mathrm{undefined},\:\int _a^c\:f\left(x\right)dx=\int _a^b\:f\left(x\right)dx+\int _b^c\:f\left(x\right)dx\\ =\int _0^{\sqrt{\frac{3}{2}}}\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt+\int _{\sqrt{\frac{3}{2}}}^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\ =-4\sqrt{6}+\frac{27}{8}\\ =4\sqrt{6}-\frac{27}{8}\\ =-4\sqrt{6}+\frac{27}{8}+4\sqrt{6}-\frac{27}{8}\\ =0∫03(3+2t2)(t−2)dt=∫033−2t29−4t4(t−2)dtIfexistb,a<b<c,f(b)=undefined,∫acf(x)dx=∫abf(x)dx+∫bcf(x)dx=∫0233−2t29−4t4(t−2)dt+∫2333−2t29−4t4(t−2)dt=−46+827=46−827=−46+827+46−827=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments