∫0^{3}(3+2t^{2}𝛿(t-2)dt
"\\int _0^3\\left(3+2t^2\\right)\\left(t-2\\right)dt\\\\\n=\\int _0^3\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt\\\\\n\\mathrm{If\\:exist}\\:b,\\:a<b<c,\\:f\\left(b\\right)=\\mathrm{undefined},\\:\\int _a^c\\:f\\left(x\\right)dx=\\int _a^b\\:f\\left(x\\right)dx+\\int _b^c\\:f\\left(x\\right)dx\\\\\n=\\int _0^{\\sqrt{\\frac{3}{2}}}\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt+\\int _{\\sqrt{\\frac{3}{2}}}^3\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt\\\\\n=-4\\sqrt{6}+\\frac{27}{8}\\\\\n=4\\sqrt{6}-\\frac{27}{8}\\\\\n=-4\\sqrt{6}+\\frac{27}{8}+4\\sqrt{6}-\\frac{27}{8}\\\\\n=0"
Comments
Leave a comment