∫ 0 3 ( 3 + 2 t 2 ) ( t − 2 ) d t = ∫ 0 3 9 − 4 t 4 3 − 2 t 2 ( t − 2 ) d t I f e x i s t b , a < b < c , f ( b ) = u n d e f i n e d , ∫ a c f ( x ) d x = ∫ a b f ( x ) d x + ∫ b c f ( x ) d x = ∫ 0 3 2 9 − 4 t 4 3 − 2 t 2 ( t − 2 ) d t + ∫ 3 2 3 9 − 4 t 4 3 − 2 t 2 ( t − 2 ) d t = − 4 6 + 27 8 = 4 6 − 27 8 = − 4 6 + 27 8 + 4 6 − 27 8 = 0 \int _0^3\left(3+2t^2\right)\left(t-2\right)dt\\
=\int _0^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\
\mathrm{If\:exist}\:b,\:a<b<c,\:f\left(b\right)=\mathrm{undefined},\:\int _a^c\:f\left(x\right)dx=\int _a^b\:f\left(x\right)dx+\int _b^c\:f\left(x\right)dx\\
=\int _0^{\sqrt{\frac{3}{2}}}\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt+\int _{\sqrt{\frac{3}{2}}}^3\frac{9-4t^4}{3-2t^2}\left(t-2\right)dt\\
=-4\sqrt{6}+\frac{27}{8}\\
=4\sqrt{6}-\frac{27}{8}\\
=-4\sqrt{6}+\frac{27}{8}+4\sqrt{6}-\frac{27}{8}\\
=0 ∫ 0 3 ( 3 + 2 t 2 ) ( t − 2 ) d t = ∫ 0 3 3 − 2 t 2 9 − 4 t 4 ( t − 2 ) d t If exist b , a < b < c , f ( b ) = undefined , ∫ a c f ( x ) d x = ∫ a b f ( x ) d x + ∫ b c f ( x ) d x = ∫ 0 2 3 3 − 2 t 2 9 − 4 t 4 ( t − 2 ) d t + ∫ 2 3 3 3 − 2 t 2 9 − 4 t 4 ( t − 2 ) d t = − 4 6 + 8 27 = 4 6 − 8 27 = − 4 6 + 8 27 + 4 6 − 8 27 = 0
Comments