Answer to Question #223814 in Chemical Engineering for Lokika

Question #223814

∫0^{3}(3+2t^{2}𝛿(t-2)dt


1
Expert's answer
2021-08-09T08:04:34-0400

"\\int _0^3\\left(3+2t^2\\right)\\left(t-2\\right)dt\\\\\n=\\int _0^3\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt\\\\\n\\mathrm{If\\:exist}\\:b,\\:a<b<c,\\:f\\left(b\\right)=\\mathrm{undefined},\\:\\int _a^c\\:f\\left(x\\right)dx=\\int _a^b\\:f\\left(x\\right)dx+\\int _b^c\\:f\\left(x\\right)dx\\\\\n=\\int _0^{\\sqrt{\\frac{3}{2}}}\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt+\\int _{\\sqrt{\\frac{3}{2}}}^3\\frac{9-4t^4}{3-2t^2}\\left(t-2\\right)dt\\\\\n=-4\\sqrt{6}+\\frac{27}{8}\\\\\n=4\\sqrt{6}-\\frac{27}{8}\\\\\n=-4\\sqrt{6}+\\frac{27}{8}+4\\sqrt{6}-\\frac{27}{8}\\\\\n=0"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS