Find the Laplace Transform of the following functions:
i)ft=e-tsinh 3t
ii)ft=t9e5t
i
"\\mathrm{Apply\\:transform\\:rule:\\quad if\\:}L\\left\\{f\\left(t\\right)\\right\\}=F\\left(s\\right)\\mathrm{\\:then\\:}\\:L\\left\\{e^{at}f\\left(t\\right)\\right\\}=F\\left(s-a\\right)\\\\\n\\mathrm{For\\:}e^{-t}\\sinh \\left(3t\\right):\\quad f\\left(t\\right)=\\sinh \\left(3t\\right),\\:\\quad a=-1\\\\\n=L\\left\\{\\sinh \\left(3t\\right)\\right\\}\\left(s+1\\right)\\\\\n=\\frac{3}{s^2-9}\\\\\n=\\frac{3}{\\left(s+1\\right)^2-9}"
ii
"\\mathrm{Use\\:Laplace\\:Transform\\:table}:\\quad \\:L\\left\\{t^kf\\left(t\\right)\\right\\}=\\left(-1\\right)^k\\frac{d^k}{ds^k}\\left(L\\left\\{f\\left(t\\right)\\right\\}\\right)\\\\\n\\mathrm{For\\:}t^9e^{5t}:\\quad f\\left(t\\right)=e^{5t},\\:\\quad \\:k=9\\\\\n=\\left(-1\\right)^9\\frac{d^9}{ds^9}\\left(L\\left\\{e^{5t}\\right\\}\\right)\\\\\nL({e^{5t}})=\\frac{1}{s-5}\\\\\n\\frac{d^9}{ds^9}(\\frac{1}{s-5})=-\\frac{362880}{\\left(s-5\\right)^{10}}\\\\\n=\\left(-1\\right)^9\\left(-\\frac{362880}{\\left(s-5\\right)^{10}}\\right)\\\\\n=\\frac{362880}{\\left(s-5\\right)^{10}}"
Comments
Leave a comment