Given:
F ( x , y , z ) = x y 2 + 2 y z − 8 , M ( 3 , − 2 , 1 ) F(x,y,z)=xy^2+2yz-8,\quad M(3,-2,1) F ( x , y , z ) = x y 2 + 2 yz − 8 , M ( 3 , − 2 , 1 )
The unit normal vector to the surface F ( x , y , z ) = 0 F(x,y,z)=0 F ( x , y , z ) = 0 is given by
N = ∇ F ∣ ∇ F ∣ {\bf N}=\frac{\nabla F}{|\nabla F|} N = ∣∇ F ∣ ∇ F
∇ F = ( i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z ) ( x y 2 + 2 y z − 8 ) \nabla F=\left({\bf i}\frac{\partial}{\partial x}+{\bf j}\frac{\partial}{\partial y}+{\bf k}\frac{\partial}{\partial z}\right)(xy^2+2yz-8) ∇ F = ( i ∂ x ∂ + j ∂ y ∂ + k ∂ z ∂ ) ( x y 2 + 2 yz − 8 )
= ( i y 2 + j ( 2 x y + 2 z ) + k 2 y ) = 4 i − 10 j − 4 k =\left({\bf i}y^2+{\bf j}(2xy+2z)+{\bf k}2y\right)=4{\bf i}-10{\bf j}-4{\bf k} = ( i y 2 + j ( 2 x y + 2 z ) + k 2 y ) = 4 i − 10 j − 4 k
∣ ∇ F ∣ = 4 2 + ( − 10 ) 2 + ( − 4 ) 2 = 2 33 |\nabla F|=\sqrt{4^2+(-10)^2+(-4)^2}=2\sqrt{33} ∣∇ F ∣ = 4 2 + ( − 10 ) 2 + ( − 4 ) 2 = 2 33 Finally
N = 2 i − 5 j − 2 k 33 {\bf N}=\frac{2{\bf i}-5{\bf j}-2{\bf k}}{\sqrt{33}} N = 33 2 i − 5 j − 2 k
Comments