Let us write the energy conservation expression for this system:
"m_{wat.}c_{wat.}(t_{90}-t_{e})=m_{ice}\\lambda_{ice}+m_{ice}c_{wat.}(t_{e}-t_{0});"
Thus,
"t_{e}=\\frac{m_{wat.}c_{wat.}t_{90}-m_{ice}\\lambda_{ice}+m_{ice}c_{wat.}t_{0}}{m_{ice}c_{wat.}+m_{wat.}c_{wat.}}=\\frac{0,02kg*4200\\frac{J}{kg*C}*90C-0.0011kg*330\\frac{kJ}{kg}+0.0011kg*4200\\frac{J}{kg*C}*0C}{0.0011kg*4200\\frac{J}{kg*C}+0.02kg*4200\\frac{J}{kg*C}}=81C;"
Entropy change could be expressed as:
"\\delta S=S_{melting}+S_{heating}+S_{cooling};"
"S_{melting}=\\frac{\\delta H_{melting}}{T}=\\frac{330*10^{5}\\frac{J}{kg}}{273K}=1220\\frac{J}{kg*K};"
"S_{heating}=S_{354}-S_{273}=C_{p}ln\\frac{T_{2}}{T_{1}}=4200\\frac{J}{kg*K}ln\\frac{354K}{273K}=1091\\frac{J}{kg*K};"
"S_{cooling}=S_{354}-S_{363}=4200\\frac{J}{kg*K}ln\\frac{354K}{363K}=-105\\frac{J}{kg*K};"
Finally,
"\\delta S=1220\\frac{J}{kg*K}+1091\\frac{J}{kg*K}-105\\frac{J}{kg*K}=2206\\frac{J}{kg*K}."
Comments
Leave a comment