Question #143013

Explain how do I calculate the fraction of species in the weak acid H3A?


1
Expert's answer
2020-11-09T14:05:13-0500

H3A <=> H+ + H2A-

K1=[H+][H2A][H3A]K_1 = \frac{[H^+][H_2A^-]}{[H_3A]}


[H3A]=[H+][H2A]K1K2K3[H_3A] = \frac{[H^+][H_2A^-]}{K_1K_2K_3}


H2A- <=> H+ + HA-2

K2=[H+][HA2][H2A]K_2 = \frac{[H^+][HA^{2-}]}{[H_2A^-]}


[H2A]=[H+]2[A3]K2K3[H_2A^-] = \frac{[H^+]^2[A^{3-}]}{K_2K_3}


HA-2 <=> H+ + A-3

K3=[H+][A3][HA2]K_3 = \frac{[H^+][A^{3-}]}{[HA^{2-}]}


[HA2]=[H+][A3]K3[HA^{2-}] = \frac{[H^+][A^{3-}]}{K_3}

The equations to calculate the fractions of each species:

α1=[H3A][H3A]+[H2A]+[HA2]+[A3]α_1 = \frac{[H_3A]}{[H_3A] + [H_2A^-] + [HA^{2-}] + [A^{3-}]}


α1=[H+]3[A3]K1K2K3[H+]3[A3]K1K2K3+[H+]2[A3]K2K3+[H+][A3]K3+[A3]α_1 = \frac{\frac{[H^+]^3[A^{3-}]}{K_1K_2K_3}}{\frac{[H^+]^3[A^{3-}]}{K_1K_2K_3} + \frac{[H^+]^2[A^{3-}]}{K_2K_3} + \frac{[H^+][A^{3-}]}{K_3} + [A^{3-}]}


α1=[H+]3[H+]3+K1[H+]2+K1K2[H+]+K1K2K3α_1 = \frac{[H^+]^3}{[H^+]^3 + K_1[H^+]^2 + K_1K_2[H^+] + K_1K_2K_3}


The denominator is the same for all of the fractional species equations.

α2=[H+]2[A3]K2K3denominatorα_2 = \frac{\frac{[H^+]^2[A^{3-}]}{K_2K_3}}{denominator}


α2=[H+]2[H+]3K1+[H+]2+[H+]K2+K2K3α_2 = \frac{[H^+]^2}{\frac{[H^+]^3}{K_1} + [H^+]^2 + [H^+]K_2 + K_2K_3}


α3=[H+][A3]K3denominatorα_3 = \frac{\frac{[H^+][A^{3-}]}{K_3}}{denominator}


α3=[H+][H+]3K1K2+[H+]2K2+[H+]+K3α_3 = \frac{[H^+]}{\frac{[H^+]^3}{K_1K_2}+\frac{[H^+]^2}{K_2} + [H^+] + K_3}


α4=1α1α2α3α_4 = 1 – α_1 – α_2 - α_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS