Explain how do I calculate the fraction of species in the weak acid H3A?
H3A <=> H+ + H2A-
"K_1 = \\frac{[H^+][H_2A^-]}{[H_3A]}"
"[H_3A] = \\frac{[H^+][H_2A^-]}{K_1K_2K_3}"
H2A- <=> H+ + HA-2
"K_2 = \\frac{[H^+][HA^{2-}]}{[H_2A^-]}"
"[H_2A^-] = \\frac{[H^+]^2[A^{3-}]}{K_2K_3}"
HA-2 <=> H+ + A-3
"K_3 = \\frac{[H^+][A^{3-}]}{[HA^{2-}]}"
"[HA^{2-}] = \\frac{[H^+][A^{3-}]}{K_3}"
The equations to calculate the fractions of each species:
"\u03b1_1 = \\frac{[H_3A]}{[H_3A] + [H_2A^-] + [HA^{2-}] + [A^{3-}]}"
"\u03b1_1 = \\frac{\\frac{[H^+]^3[A^{3-}]}{K_1K_2K_3}}{\\frac{[H^+]^3[A^{3-}]}{K_1K_2K_3} + \\frac{[H^+]^2[A^{3-}]}{K_2K_3} + \\frac{[H^+][A^{3-}]}{K_3} + [A^{3-}]}"
"\u03b1_1 = \\frac{[H^+]^3}{[H^+]^3 + K_1[H^+]^2 + K_1K_2[H^+] + K_1K_2K_3}"
The denominator is the same for all of the fractional species equations.
"\u03b1_2 = \\frac{\\frac{[H^+]^2[A^{3-}]}{K_2K_3}}{denominator}"
"\u03b1_2 = \\frac{[H^+]^2}{\\frac{[H^+]^3}{K_1} + [H^+]^2 + [H^+]K_2 + K_2K_3}"
"\u03b1_3 = \\frac{\\frac{[H^+][A^{3-}]}{K_3}}{denominator}"
"\u03b1_3 = \\frac{[H^+]}{\\frac{[H^+]^3}{K_1K_2}+\\frac{[H^+]^2}{K_2} + [H^+] + K_3}"
"\u03b1_4 = 1 \u2013 \u03b1_1 \u2013 \u03b1_2 - \u03b1_3"
Comments
Leave a comment