A solid conducting sphere of radius a carries a net positive
charge +2Q. A conducting spherical shell of inner radius b and
outer radius c is concentric with the solid sphere and carries a
net charge -Q. Using Gauss's law, find the electric field in the
regions labeled 1, 2, 3, and 4 in Figure and the charge
distribution on the shell when the entire system is in
electrostatic equilibrium
picture : https://ibb.co/m6h9Wpj
Gives
Solid conducting Sphere
Gauss law
"\\phi=\\frac{q}{\\epsilon_0}"
"E.A=\\frac{q}{\\epsilon_0}"
"E(4\\pi r^2)=\\frac{2Q}{\\epsilon_0}"
"E_1=\\frac{kQ}{r^2}\\\\r=a\\\\E_1=\\frac{2kQ}{a^2}"
Part(b)
"\\phi=\\oint E.dA"
"\\phi=E(4\\pi r^2)"
"4\\pi r^2 E=\\frac{Q r^3}{\\epsilon a^3}"
"E=\\frac{kQr}{a^3}"
"\\phi=\\oint E.dA"
"\\phi=E(4\\pi b^2)"
"4\\pi a^2 E=\\frac{Q a^3}{\\epsilon r^3}"
"E_2=\\frac{kQa}{r^3}"
"\\phi=\\oint E.dA"
"\\phi=E.(4\\pi c^2)"
"4\\pi c^2 E=\\frac{Q c^3}{\\epsilon r^3}"
"E_3=\\frac{kQr}{c^3}"
"\\oint E.dA=\\frac{Q}{\\epsilon_0}"
"E.(4\\pi c^2)=\\frac{Q}{\\epsilon_0}\\\\E=\\frac{kQ}{c^2}"
"E_4=\\frac{kQ}{c^2}"
Comments
Leave a comment