A parallel-plate capacitor of a plate area A and plate separation d. The left half
of the gap is filled with a material with dielectric constant κ1; the top of the right half is filled with
material of dielectric constant κ2; the bottom of the right half is filled material of dielectric constant
κ3. What is the capacitance C?
Gives
Dielectric material="k_1,k_2,k_3"
Let us assume d'=2d
"C_1=\\frac{\\epsilon_0( \\frac{A}{2} )k_1}{2d'}=\\frac{A\\epsilon_0 k_1}{4d'}"
"C_2=\\frac{\\epsilon_0( \\frac{A}{2} )k_2}{d'}=\\frac{A\\epsilon_0 k_2}{2d'}"
"C_3=\\frac{\\epsilon_0( {A}{} )k_3}{2d'}"
"C=C_1+\\frac{C_2C_3}{C_1+C_3}"
"C=\\frac{A\\epsilon_0}{4d'}[k_1+\\frac{2k_2k_3}{k_2+k_3}]"
"C=\\frac{A\\epsilon_0}{2d'}[\\frac{k_1}{2}+\\frac{k_2k_3}{k_2+k_3}]"
"C=\\frac{A\\epsilon_0}{d}[\\frac{k_1}{2}+\\frac{k_2k_3}{k_2+k_3}]"
Comments
Leave a comment