((xn,yn) is convergent iff both (xn}) and (yn) are convergent. In fact, for(x0 ,y0) in R2, we have (xn ,yn) converging to (x0,y0) iff xn converges to x0 and yn converges to y0
ANSWER
To prove the statement, we use the definitions:
Definition 1 Let "\\left\\{ \\left( { x }_{ n\\ },{y}_{n} \\right) \\right\\}" is a sequence in "\\R^{2}" . We say that "\\left( { x }_{ n\\quad },{ y }_{ n } \\right)" convergens to "\\left( { x }_{0\\ },{ y }_{ 0 } \\right)" and write "\\left( { x }_{ n\\ },{ y }_{ n } \\right) \\rightarrow \\left( { x }_{ 0\\ },{ y }_{ 0 } \\right)" if for every "\\varepsilon >0\\quad"there is an "N_{0}\\in \\N" such that for all "n\\in \\N," if "n>N_{0}" , then
"\\left\\| \\left( { x }_{ n\\quad },{ y }_{ n } \\right) -\\left( { x }_{ 0\\quad },{ y }_{ 0 } \\right) \\right\\| =\\sqrt { { \\left( { x }_{ n }-{ x }_{ 0\\quad } \\right) }^{ 2 }+{ \\left( { y }_{ n }-{ y }_{ 0\\quad } \\right) }^{ 2 } } <\\varepsilon"
Definition 2 Let "\\left\\{ \\left( { x }_{ n }\\right ) \\right\\}" is a sequence in "\\R" . We say that "\\left( { x }_{ n } \\right)" convergens to "\\left( { x }_{0\\ } \\right)" and write "{ x }_{ n } \\rightarrow { x }_{ 0 }" if for every "\\varepsilon >0\\quad"there is an "N_{x}\\in \\N" such that for all "n\\in\\N" if "n>N_{x}" , then
"|x_{ n }-x_{ 0 }|<\\varepsilon"
1) Let "\\left( { x }_{ n\\ },{ y }_{ n } \\right) \\rightarrow \\left( { x }_{ 0\\ },{ y }_{ 0 } \\right)" .If "\\varepsilon>0" and "n>N_{0}" , such that "\\left\\| \\left( { x }_{ n\\quad },{ y }_{ n } \\right) -\\left( { x }_{ 0\\quad },{ y }_{ 0 } \\right) \\right\\| <\\varepsilon" ,then for all "n>N_{0}" :
"|{ x }_{ n }-{ x }_{ 0\\quad }|\\quad =\\sqrt { { \\left( { x }_{ n }-{ x }_{ 0\\quad } \\right) }^{ 2 }\\quad } \\le \\sqrt { { \\left( { x }_{ n }-{ x }_{ 0\\quad } \\right) }^{ 2 }+{ \\left( { y }_{ n }-{ y }_{ 0\\quad } \\right) }^{ 2 } } =\\left\\| \\left( { x }_{ n\\quad },{ y }_{ n } \\right) -\\left( { x }_{ 0\\quad },{ y }_{ 0 } \\right) \\right\\|<\\varepsilon"
and "|{ y }_{ n }-{ y }_{ 0\\ }|\\quad =\\sqrt { { \\left( { y }_{ n }-{ y }_{ 0\\quad } \\right) }^{ 2 } } \\le \\sqrt { { \\left( { x }_{ n }-{ x }_{ 0\\quad } \\right) }^{ 2 }+{ \\left( { y }_{ n }-{ y }_{ 0\\quad } \\right) }^{ 2 } } =\\left\\| \\left( { x }_{ n\\quad },{ y }_{ n } \\right) -\\left( { x }_{ 0\\quad },{ y }_{ 0 } \\right) \\right\\| <\\varepsilon"
Therefore, by the definition 2 "{ x }_{ n } \\rightarrow { x }_{ 0 }" and "{y }_{ n } \\rightarrow { y }_{ 0 }"
2) If "{ x }_{ n } \\rightarrow { x }_{ 0 }" and "{y }_{ n } \\rightarrow { y }_{ 0 }" , then by the definition 2 , for every "\\varepsilon >0\\quad"there is an "N_{x}, N_{y}\\in \\N" such that for all "n\\in \\N," if "n>N_{x}" , then
"|x_{n} -x_{0}|<\\frac { \\varepsilon }{ \\sqrt { 2 } }"
and if "n>N_{y}" , then
"|y_{n} -y_{0}|<\\frac { \\varepsilon }{ \\sqrt { 2 } }" .
Let "{ N }_{ 0 }=\\max { \\left\\{ N_{ x },\\quad N_{ y } \\right\\} }" . Since "N_{0}>N_{x}, N_{0}>N_{y}" , then for all "n>N_{0}" "(\\Rightarrow n>N_{x}, n>N_{y})"
"\\left\\| \\left( { x }_{ n\\quad },{ y }_{ n } \\right) -\\left( { x }_{ 0\\quad },{ y }_{ 0 } \\right) \\right\\| =\\sqrt { { \\left( { x }_{ n }-{ x }_{ 0\\quad } \\right) }^{ 2 }+{ \\left( { y }_{ n }-{ y }_{ 0\\quad } \\right) }^{ 2 } } <\\sqrt { \\frac { { \\varepsilon }^{ 2 } }{ 2 } +\\frac { { \\varepsilon }^{ 2 } }{ 2 } } =\\varepsilon" .
Therefore, by the definition 1, "\\left( { x }_{ n\\ },{ y }_{ n } \\right) \\rightarrow \\left( { x }_{ 0\\ },{ y }_{ 0 } \\right)" .
Hence, "1)\\Leftrightarrow 2)" .
Comments
Leave a comment