find the nth term of the following series 1*2/3^2*4^2 + 3*4/5^2*6^2 + 5*6/7^2*8^2 + ... is convergent.
ANSWER "\\sum_{n=1}^{\\infty }\\frac{(2n-1)(2n) }{\\left ( 2n+1 \\right )^{2}\\cdot\\left ( 2n+2 \\right )^{2}}" converges
EXPLANATION
"a_{n}= \\frac{(2n-1)(2n) }{\\left ( 2n+1 \\right )^{2}\\cdot\\left ( 2n+2 \\right )^{2}} \\Rightarrow"
"a_{1} =\\frac{(2\\cdot1-1)(2\\cdot1 ) }{\\left ( 2\\cdot1+1 \\right )^{2}\\cdot\\left ( 2\\cdot1+2 \\right )^{2 }} =\\frac{1\\cdot2}{3^{2}\\cdot4^{2}}," "a_{2} =\\frac{(2\\cdot2-1)(2\\cdot2 ) }{\\left ( 2\\cdot2+1 \\right )^{2}\\cdot\\left ( 2\\cdot2+2 \\right )^{2 }} =\\frac{3\\cdot4}{5^{2}\\cdot6^{2}}," "a_{3} =\\frac{(2\\cdot3-1)(2\\cdot3 ) }{\\left ( 2\\cdot3+1 \\right )^{2}\\cdot\\left ( 2\\cdot3+2 \\right )^{2 }} =\\frac{5\\cdot6}{7^{2}\\cdot8^{2}} ..." .Let "b_{n}= \\frac{1}{n^{2}}" , then "\\frac{a_{n}}{b_{n}}=\\frac{(2n-1)(2n) \\cdot n^{2}}{\\left ( 2n+1 \\right )^{2}\\cdot\\left ( 2n+2 \\right )^{2}}" "= \\frac{(2 -\\frac{1}{n}) \\cdot 2 }{\\left ( 2 +\\frac{1}{n} \\right )^{2}\\cdot\\left ( 2 +\\frac{2}{n} \\right )^{2}}" . Since "\\lim _{n\\rightarrow\\infty}\\frac{1}{n}=0" , then "\\lim _{n\\rightarrow\\infty}\\frac{a_{n}}{b_{n}}=\\frac{1}{4}>0."
The series "\\sum_{n=1}^{\\infty}\\frac{1}{n^{2}}" converges (p-series, p=2). Hence (by Limit Comparison Test) "\\sum_{n=1}^{\\infty }\\frac{(2n-1)(2n) }{\\left ( 2n+1 \\right )^{2}\\cdot\\left ( 2n+2 \\right )^{2}}" converges.
Comments
Leave a comment