ANSWER
By the definition, the sequence { ( x n , y n ) } \left\{ \left( { x }_{ n }{ ,y }_{ n } \right) \right\} { ( x n , y n ) } is bounded in R 2 R^2 R 2 if there exists M > 0 M>0 M > 0 such that
∥ ( x n , y n ) ∥ = ( x n ) 2 + ( y n ) 2 ≤ M \left\| \left( { x }_{ n },{ y }_{ n } \right) \right\| =\sqrt { { \left( { x }_{ n } \right) }^{ 2 }+{ \left( { y }_{ n } \right) }^{ 2 } } \le M ∥ ( x n , y n ) ∥ = ( x n ) 2 + ( y n ) 2 ≤ M for all n ∈ N n\in N n ∈ N .
Therefore
∣ x n ∣ = ( x n ) 2 ≤ ( x n ) 2 + ( y n ) 2 ≤ M \left| { x }_{ n } \right| =\sqrt { { \left( { x }_{ n } \right) }^{ 2 }\quad } \le \sqrt { { \left( { x }_{ n } \right) }^{ 2 }+{ \left( { y }_{ n } \right) }^{ 2 } } \le M ∣ x n ∣ = ( x n ) 2 ≤ ( x n ) 2 + ( y n ) 2 ≤ M for all n ∈ N n\in N n ∈ N .
and
∣ y n ∣ = ( y n ) 2 ≤ ( x n ) 2 + ( y n ) 2 ≤ M \left| { y }_{ n } \right| =\sqrt { { \left( { y }_{ n } \right) }^{ 2 }\quad } \le \sqrt { { \left( { x }_{ n } \right) }^{ 2 }+{ \left( { y }_{ n } \right) }^{ 2 } } \le M ∣ y n ∣ = ( y n ) 2 ≤ ( x n ) 2 + ( y n ) 2 ≤ M
Equivalent to
− M ≤ x n ≤ M -M\leq x_{n}\leq M − M ≤ x n ≤ M . for all n ∈ N n\in N n ∈ N
and
− M ≤ y n ≤ M -M\leq y_{n}\leq M − M ≤ y n ≤ M for all n ∈ N n\in N n ∈ N
So, the sequences { ( x n ) } , \left\{ \left( { x }_{ n } \right) \right\} , { ( x n ) } , { ( y n ) } \left\{ \left( {y }_{ n } \right) \right\} { ( y n ) } are bounded in R R R .
Comments