Given a sequence ((xn,yn)) is R2 .prove that if ((xn,yn)) is bounded ,then (xn) and (yn) are bounded.
ANSWER
By the definition, the sequence "\\left\\{ \\left( { x }_{ n }{ ,y }_{ n } \\right) \\right\\}" is bounded in "R^2" if there exists "M>0" such that
"\\left\\| \\left( { x }_{ n },{ y }_{ n } \\right) \\right\\| =\\sqrt { { \\left( { x }_{ n } \\right) }^{ 2 }+{ \\left( { y }_{ n } \\right) }^{ 2 } } \\le M" for all "n\\in N" .
Therefore
"\\left| { x }_{ n } \\right| =\\sqrt { { \\left( { x }_{ n } \\right) }^{ 2 }\\quad } \\le \\sqrt { { \\left( { x }_{ n } \\right) }^{ 2 }+{ \\left( { y }_{ n } \\right) }^{ 2 } } \\le M" for all "n\\in N" .
and
"\\left| { y }_{ n } \\right| =\\sqrt { { \\left( { y }_{ n } \\right) }^{ 2 }\\quad } \\le \\sqrt { { \\left( { x }_{ n } \\right) }^{ 2 }+{ \\left( { y }_{ n } \\right) }^{ 2 } } \\le M"
Equivalent to
"-M\\leq x_{n}\\leq M" . for all "n\\in N"
and
"-M\\leq y_{n}\\leq M" for all "n\\in N"
So, the sequences "\\left\\{ \\left( { x }_{ n } \\right) \\right\\} ," "\\left\\{ \\left( {y }_{ n } \\right) \\right\\}" are bounded in "R" .
Comments
Leave a comment