show that
a) lim x- infinity (x-3/x-1)^x =1/e^2
b) lim x->5/3 1/(3x+5)^2 =infinity
a)
"=\\lim\\limits_{x\\to\\infin}\\bigg(1-\\dfrac{2}{x-1}\\bigg)^{-{x-1 \\over 2}(-{2 \\over x-1})x}"
"=\\lim\\limits_{x\\to\\infin}\\bigg[\\bigg(1-\\dfrac{2}{x-1}\\bigg)^{-{x-1 \\over 2}}\\bigg]^{-{2x \\over x-1}}"
"=e^{-2}=\\dfrac{1}{e^2}"
b)
"\\lim\\limits_{x\\to-5\/3}\\big(\\dfrac{1}{3x+5}\\big)^2=\\dfrac{1}{9}\\lim\\limits_{x\\to-5\/3}\\big(\\dfrac{1}{x+5\/3}\\big)^2=\\infin"
Comments
Leave a comment