Suppose that π is differentiable and πβ²β²(π) exists. Prove that πβ²β²(π)=lim ββπ[(π(π+β)β2π(π)+π(πββ))/h^2.] Give an example where the above limit exists, but πβ²β²(π) does not exist.
"f''(x)=\\displaystyle \\lim_{h\\to 0}\\frac{f'(x+h)-f'(x)}{h}="
"=\\displaystyle \\lim_{h\\to 0}\\frac{\\displaystyle \\lim_{h_1\\to 0}\\frac{f'(x+h)-f'(x+h-h_1)}{h_1}-\\displaystyle \\lim_{h_2\\to 0}\\frac{f'(x)-f'(x-h_2)}{h_2}}{h}"
lettingΒ "h=h_1=h_2", i.e. taking them all to zero at the same rate we have:
"f''(x)=\\displaystyle \\lim_{h\\to 0}\\frac{\\frac{f'(x+h)-f'(x+h-h)}{h}-\\frac{f'(x)-f'(x-h)}{h}}{h}=\\displaystyle \\lim_{h\\to 0}\\frac{f(x+h)+f(x-h)-2f(x)}{h^2}"
then:
"f''(a)=\\displaystyle \\lim_{h\\to 0}\\frac{f(a+h)+f(a-h)-2f(a)}{h^2}"
example:
forΒ "f'(x)=|x|"Β :
by LβHΓ΄pitalβs rule we have:
"\\displaystyle \\lim_{h\\to 0}\\frac{f(x+h)+f(x-h)-2f(x)}{h^2}=\\displaystyle \\lim_{h\\to 0}\\frac{f'(x+h)-f'(x)}{2h}="
"=\\displaystyle \\lim_{h\\to 0}\\frac{|0+h|-|0-h|}{2h}=0"
That means the limit exists at x = 0, butΒ "f'(x)=|x|"Β is not differentiable at 0, soΒ "f''(0)"
does not exist.
Comments
Leave a comment