Let {an} sequence is defined as a1=3, an+1=1/5(an)
converges to zero
"a_1=3, a_{n+1}=\\dfrac15(a_n) \n\\\\ \\Rightarrow a_{2}=\\dfrac15(a_1)= \\dfrac15(3)=\\dfrac35\n\\\\ \\Rightarrow a_{3}=\\dfrac15(a_2)= \\dfrac15(\\dfrac35)=\\dfrac3{25}\n\\\\ \\Rightarrow a_{4}=\\dfrac15(a_3)= \\dfrac15(\\dfrac3{25})=\\dfrac3{125}"
Thus, "a_{n+1}=\\dfrac{3}{5^n}"
Now, "\\lim_{n\\rightarrow \\infty}a_{n+1}=\\lim_{n\\rightarrow \\infty}\\dfrac{3}{5^n}"
"=\\dfrac{3}{\\infty}\n\\\\=0"
Comments
Leave a comment