Examine the convergence of the series
a) 3×4/5^2+5×6/7^2+7×8/9^2+.........
b) 1+4x+4^2x^2+4^3x^3+......(x>0)
a)
"\\dfrac{3\\times4}{5^2}+\\dfrac{5\\times6}{7^2}+\\dfrac{7\\times8}{9^2}+...""=\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{(2n+1)(2n+2)}{(2n+3)^2}"
Use Test for Divergence
"\\lim\\limits_{n\\to \\infin}a_n=\\lim\\limits_{n\\to \\infin}\\dfrac{(2n+1)(2n+2)}{(2n+3)^2}"
"=\\lim\\limits_{n\\to \\infin}\\dfrac{(\\dfrac{2n}{n}+\\dfrac{1}{n})(\\dfrac{2n}{2}+\\dfrac{2}{n})}{(\\dfrac{2n}{n}+\\dfrac{3}{n})^2}"
"=\\lim\\limits_{n\\to \\infin}\\dfrac{(2+\\dfrac{1}{n})(2+\\dfrac{2}{n})}{(2+\\dfrac{3}{n})^2}=\\dfrac{(2+0)(2+0)}{(2+0)^2}=1\\not=0"
The series "\\dfrac{3\\times4}{5^2}+\\dfrac{5\\times6}{7^2}+\\dfrac{7\\times8}{9^2}+..." diverges by the Test for Divergence.
b)
This is a geometric series with "a=1" and "r=4x."
If "0<4x<1," the geometric series converges and its sum is
If "4x\\geq1," the geometric series diverges.
Then the series
converges for "0<x<\\dfrac{1}{4}" and diverges for "x\\geq \\dfrac{1}{4}."
Comments
Leave a comment