f(x)=(x+1)3(x−3)2 Find the first derivative with respect to x
f′(x)=3(x+1)2(x−3)2+2(x+1)3(x−3)
=(x+1)2(x−3)(3x−9+2x+2)
=(x+1)2(x−3)(5x−7) Find the critical number(s)
f′(x)=0=>(x+1)2(x−3)(5x−7)=0 Critical numbers: −1,1.4,3.
If x<−1,f′(x)>0,f(x) increases.
If −1<x<1.4,f′(x)>0,f(x) increases.
If 1.4<x<3,f′(x)<0,f(x) decreases.
If x>3,f′(x)>0,f(x) increases.
f(−1)=(−1+1)3(−1−3)2=0
f(1.4)=(1.4+1)3(1.4−3)2=35.38944
f(3)=(3+1)3(3−3)2=0The function f has a local maximum with value of 35.38944 at x=1.4.
The function f has a local minimum with value of at x=3.
The function f has neither a local maximum nor a local minimum at x=−1.
Comments
Leave a comment