Answer to Question #285797 in Real Analysis for Reens

Question #285797

Examine the function ,f(x)=(x+1)^3(x-3)^2 for extreme values

1
Expert's answer
2022-01-11T00:02:57-0500
f(x)=(x+1)3(x3)2f(x)=(x+1)^3(x-3)^2

Find the first derivative with respect to xx


f(x)=3(x+1)2(x3)2+2(x+1)3(x3)f'(x)=3(x+1)^2(x-3)^2+2(x+1)^3(x-3)

=(x+1)2(x3)(3x9+2x+2)=(x+1)^2(x-3)(3x-9+2x+2)

=(x+1)2(x3)(5x7)=(x+1)^2(x-3)(5x-7)

Find the critical number(s)


f(x)=0=>(x+1)2(x3)(5x7)=0f'(x)=0=>(x+1)^2(x-3)(5x-7)=0

Critical numbers: 1,1.4,3.-1, 1.4, 3.

If x<1,f(x)>0,f(x)x<-1,f'(x)>0, f(x) increases.

If 1<x<1.4,f(x)>0,f(x)-1<x<1.4,f'(x)>0, f(x) increases.

If 1.4<x<3,f(x)<0,f(x)1.4<x<3,f'(x)<0, f(x) decreases.

If x>3,f(x)>0,f(x)x>3,f'(x)>0, f(x) increases.


f(1)=(1+1)3(13)2=0f(-1)=(-1+1)^3(-1-3)^2=0


f(1.4)=(1.4+1)3(1.43)2=35.38944f(1.4)=(1.4+1)^3(1.4-3)^2=35.38944

f(3)=(3+1)3(33)2=0f(3)=(3+1)^3(3-3)^2=0

The function ff has a local maximum with value of 35.3894435.38944 at x=1.4.x=1.4.

The function ff has a local minimum with value of at x=3.x=3.

The function ff has neither a local maximum nor a local minimum at x=1.x=-1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment