prove that lim n->infinity [1/√2n-1 +1/√4n-2^2 +1/√6n-3^2 +.......+1/n]=π/2
"\\lim_{n\\to \\infty}\\left[ \\frac{1}{\\sqrt{2n-1}}+\\frac{1}{\\sqrt{4n-2^2}}+\\frac{1}{\\sqrt{6n-3^2}}+\\cdots +\\frac{1}{n}\\right]\\\\\n\\lim_{n\\to \\infty} \\sum_{r=1}^n \\frac{1}{\\sqrt{2rn-r^2}}\\\\\n\\lim_{n\\to \\infty} \\sum_{r=1}^n \\frac{1}{n\\sqrt{\\frac{2r}{n}-(\\frac{r}{n})^2}}\\\\"
Let "x=\\frac{r}{n}, dx=\\frac{1}{n}"
The limit becomes:
"\\int_0^1\\frac{1}{\\sqrt{2x-x^2}}~dx\\\\\n=\\int_0^1\\frac{1}{\\sqrt{1-(x-1)^2}}~dx\\\\"
Let "x-1=t, dx=dt" . When "x=0, t=-1, x=1, t=0."
"\\int_{-1}^0\\frac{dt}{\\sqrt{1-t^2}}=\\sin^{-1}t \\Biggr |_{-1}^0=\\sin^{-1}0-\\sin^{-1}(-1)=0-_-\\frac{\\pi}{2}=\\frac{\\pi}{2}"
Hence,
"\\lim_{n\\to \\infty}\\left[ \\frac{1}{\\sqrt{2n-1}}+\\frac{1}{\\sqrt{4n-2^2}}+\\frac{1}{\\sqrt{6n-3^2}}+\\cdots +\\frac{1}{n}\\right]=\\frac{\\pi}{2}"
Comments
Leave a comment