Solve π¦ β²β² β π₯π¦ β² + π¦ = 0 assuming a power series. Find the range of π₯ for which the solution is valid
"y''-xy'+y=0"
It is clear from the equation above that it has no singular point. Therefore the range of x for which the solution is valid is "(-\\infty,\\infty)"
Let the solution of our equation be of the form "y=\\displaystyle\\sum_{n=0}^{\\infty}a_nx^n" .....(1)
From which,
"y'=\\displaystyle\\sum_{n=0}^{\\infty}na_nx^{n-1}=\\displaystyle\\sum_{n=1}^{\\infty}na_nx^{n-1}"
"y''=\\displaystyle\\sum_{n=0}^{\\infty}n(n-1)a_nx^{n-2}=\\displaystyle\\sum_{n=2}^{\\infty}n(n-1)a_nx^{n-2}"
We then substitute the above expressions in our equation
"\\displaystyle\\sum_{n=2}^{\\infty}n(n-1)a_nx^{n-2}-\\displaystyle\\sum_{n=1}^{\\infty}na_nx^{n}+\\displaystyle\\sum_{n=0}^{\\infty}a_nx^n=0"
"\\displaystyle\\sum_{n=0}^{\\infty}(n+1)(n+2)a_{n+2}x^{n}-\\displaystyle\\sum_{n=1}^{\\infty}na_nx^n+\\displaystyle\\sum_{n=1}^{\\infty}a_nx^n+a_0=0"
"2a_2+6a_3x+\\displaystyle\\sum_{n=1}^{\\infty}[(n+1)(n+2)a_{n+2}-na_n+a_n]x^n+a_0=0"
Comparing both sides of equal powers of x we have,
"2a_2+a_0=0\\implies a_2=-\\frac{1}{2}a_0"
"6a_3=0\\implies a_3=0"
"a_{n+2}=\\frac{n-1}{(n+1)(n+2)}a_n" , "n\\ge 0" .....(1)
From the recurrence relation (2) above we get,
"a_{4}=\\frac{1}{(2+1)(2+2)}a_2=-\\frac{1}{24}a_0"
"a_5=0=a_7=a_9=0..."
"a_{6}=\\frac{4-1}{(4+1)(4+2)}a_4=\\frac{1}{10}\\cdot (-\\frac{1}{24}a_0)=-\\frac{1}{240}a_0"
Substitute the values of "a_2,a_3,a_4,a_5,a_6" in the relation (1) to get:
"y=a_1x+a_0(1-\\frac{1}{2}x^2-\\frac{1}{24}x^4-\\frac{1}{240}x^6...)"
"\\therefore" the solution to our equation is
"y=Ax+B(1-\\frac{1}{2}x^2-\\frac{1}{24}x^4-\\frac{1}{240}x^6...)"
Where A and B are arbitrary constants.
Comments
Leave a comment