State the second mean value theorem of integrability. Verify it for the function f and g is defined by f(x)= 6x and g(x)= -5x on [3,4].
The second mean value theorem of integrability states that if the integral of a(x) and b(x) are continuous on [f,g] and b(x)"\\ge" 0 then,
"\\int_f^ga(x)b(x)dx=a(f)\\int_f^hb(x)dx+a(g)\\int_h^gb(x)dx"
Given:
f(x)=a(x)=6x
g(x)=b(x)=-5x
Where [f,g]=[3,4]
"\\int_3^4(6x)(-5x)dx=6(3)\\int_3^h-5xdx+6(4)\\int_h^4-5xdx"
"\\implies \\int_3^4-30x^2dx=18\\int_3^h(-5)dx+24\\int_h^4(-5x)dx"
"\\implies -30(\\frac{x^3}{3})_3^4=-90(\\frac{x^2}{2})_3^h+-20(\\frac{x^2}{2})_h^4"
"\\implies -30(\\frac{64-27}{3})=-90(\\frac{h^2-9}{2})-120(\\frac{16-h^2}{2})"
"\\implies -370=-45(h^2-9)-60(16-h^2)"
"\\implies -370=-45h^2+405-960+60h^2"
"\\implies -370+960-405=15h^2"
185=15h2
h2=12.33
"\\implies h=3.511"
as it defines the function
Comments
Leave a comment