Answer to Question #264664 in Real Analysis for Dhruv bartwal

Question #264664

Consider the function f defined on R by


f(x)= 2x^3+ 3x^2-72x- 36


In which of the intervals is the function f increasing, and in which of the intervals is f decreasing? Justify your answer

1
Expert's answer
2021-11-19T00:59:47-0500

Solution:f(x)=2x33x272x36                  f(x)=6x26x72                            =6(x2x12)                            =6(x24x+3x12)                            =6[x(x4)+3(x4)]                            =6(x4)(x+3)              f(x)=0 x=3,4The point  x=3 and x=4 divide the real line into three disjoint intervals.<>                           3                                       4                                  Solution: f(x)=2x^3-3x^2-72x-36 \\~~~~~~~~~~~~~~~~~~f'(x)=6x^2-6x-72 \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~=6(x^2-x-12) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~=6(x^2-4x+3x-12) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~=6[x(x-4)+3(x-4)] \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~=6(x-4)(x+3) \\~~~~~~~~~~~~~~\therefore f'(x)=0 ~\Rightarrow x=-3,4 \\The ~point~ ~x=-3 ~and~ x=4~ divide ~the ~ real ~ line ~ into ~ three~ disjoint ~intervals. \\<---------|----------|---------> \\- \infty~~~~~~~~~~~~~~~~~~~~~~~~~~~-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\infty

In the interval (-∞,-3) and (4,∞), f'(x) is positive while in the interval (-3,4), f'(x) is negative.

Hence, the given function f(x) is increasing in the interval (-∞,-3) and (4,∞) while function f(x) is decreasing in the interval (-3,4).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment