1. Show that the function f(x)= | cos 2x| is a periodic function
2. Find the local extreme value of (1/x)^x , if it exists.
1)
Consider the graph of f(x)=cos 2x below
From which the graph of f(x)=|cos 2x| is
Hence, as shown in the figure above the function f(x)=|cos 2x| is a periodic function with period "\\frac{\u03c0}{2}"
2)
Given f(x)="(\\frac{1}{x})^x" ,x>0
"ln(f(x))=ln((\\frac{1}{x})^x)"
"ln(f(x))=xln(\\frac{1}{x})"
"ln(f(x))=-xln(\\frac{1}{x})"
Differentiate to get;
"\\frac{1}{f(x)}\\cdot f'(x)=-(x\\cdot\\frac{1}{x}+ln\\ x)"
"\\implies f'(x)=-(\\frac{1}{x})^x(1+ln\\ x)"
For critical points f'(x)=0
"\\implies -(\\frac{1}{x})^x(1+ln\\ x)=0"
ln x=-1
"x=e^{-1}"
Hence local maximum exists and occurs at "x=e^{-1}"
Value "f(e^{-1})=(\\frac{1}{e^{-1}})^{e^{-1}}"
="e^{e^{-1}}"
Comments
Leave a comment