Use the principle of mathematical induction to show that
| sin nx| ≤ n| sin x|
for all n∈ N and for all x ∈ R
Using the principle of mathematical induction let us show that
"| \\sin nx| \u2264 n| \\sin x|"
for all "n\u2208 \\N" and for all "x \u2208 \\R."
If "n=1" then the inequality "| \\sin x| \u2264 | \\sin x|" is true for all "x \u2208 \\R."
Suppose for "n=k" that the inequality "| \\sin kx| \u2264 k| \\sin x|" is true for all "x \u2208 \\R."
Let us prove the inequality for "n=k+1:"
"|\\sin((k+1)x)|=|\\sin(kx+x)|=|\\sin(kx)\\cos x+\\cos(kx)\\sin x|"
"\\le |\\sin(kx)|\\cdot|\\cos x|+|\\cos(kx)|\\cdot|\\sin x|\n\\le |\\sin(kx)|\\cdot1+1\\cdot|\\sin x|"
"\\le k|\\sin x|+|\\sin x|=(k+1)|\\sin x|."
We conclude that according to the principle of mathematical induction the inequality "| \\sin nx| \u2264 n| \\sin x|" is true for all "n\u2208 \\N" and for all "x \u2208 \\R."
Comments
Leave a comment