Answer to Question #264609 in Real Analysis for Nikhil Singh

Question #264609

Use the principle of mathematical induction to show that


| sin nx| ≤ n| sin x|


for all n∈ N and for all x ∈ R

1
Expert's answer
2021-11-28T19:07:32-0500

Using the principle of mathematical induction let us show that

sinnxnsinx| \sin nx| ≤ n| \sin x|

for all nNn∈ \N and for all xR.x ∈ \R.


If n=1n=1 then the inequality sinxsinx| \sin x| ≤ | \sin x| is true for all xR.x ∈ \R.


Suppose for n=kn=k that the inequality sinkxksinx| \sin kx| ≤ k| \sin x| is true for all xR.x ∈ \R.


Let us prove the inequality for n=k+1:n=k+1:


sin((k+1)x)=sin(kx+x)=sin(kx)cosx+cos(kx)sinx|\sin((k+1)x)|=|\sin(kx+x)|=|\sin(kx)\cos x+\cos(kx)\sin x|


sin(kx)cosx+cos(kx)sinxsin(kx)1+1sinx\le |\sin(kx)|\cdot|\cos x|+|\cos(kx)|\cdot|\sin x| \le |\sin(kx)|\cdot1+1\cdot|\sin x|


ksinx+sinx=(k+1)sinx.\le k|\sin x|+|\sin x|=(k+1)|\sin x|.


We conclude that according to the principle of mathematical induction the inequality sinnxnsinx| \sin nx| ≤ n| \sin x| is true for all nNn∈ \N and for all xR.x ∈ \R.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment