Using the principle of mathematical induction let us show that
∣sinnx∣≤n∣sinx∣
for all n∈N and for all x∈R.
If n=1 then the inequality ∣sinx∣≤∣sinx∣ is true for all x∈R.
Suppose for n=k that the inequality ∣sinkx∣≤k∣sinx∣ is true for all x∈R.
Let us prove the inequality for n=k+1:
∣sin((k+1)x)∣=∣sin(kx+x)∣=∣sin(kx)cosx+cos(kx)sinx∣
≤∣sin(kx)∣⋅∣cosx∣+∣cos(kx)∣⋅∣sinx∣≤∣sin(kx)∣⋅1+1⋅∣sinx∣
≤k∣sinx∣+∣sinx∣=(k+1)∣sinx∣.
We conclude that according to the principle of mathematical induction the inequality ∣sinnx∣≤n∣sinx∣ is true for all n∈N and for all x∈R.
Comments
Leave a comment