Prove β«β0 π βπ₯ 2 π₯ 2 ππ₯ = βπ/ 4
Β
"\\int \\mathrm{e}^{-x^{2}}x^{2} \\mathrm{~d} x=" "\\int x^{2} \\mathrm{e}^{-x^{2}} \\mathrm{~d} x"
Using Integration by parts
Β "=-\\frac{x \\mathrm{e}^{-x^{2}}}{2}-\\int-\\frac{\\mathrm{e}^{-x^{2}}}{2} \\mathrm{~d} x" ...(1)
Now solving:
"\\int-\\frac{\\mathrm{e}^{-x^{2}}}{2} \\mathrm{~d} x"
Apply linearity:
Β "\\begin{aligned}\n\n&=-\\frac{\\sqrt{\\pi}}{4} \\int \\frac{2 \\mathrm{e}^{-x^{2}}}{\\sqrt{\\pi}} \\mathrm{d} x \\\\\n\n&=-\\frac{\\sqrt{\\pi} \\operatorname{erf}(x)}{4}\n\n\\end{aligned}"
Put the above value in eqn .(1)
Β "\\begin{aligned}\n\n&-\\frac{x \\mathrm{e}^{-x^{2}}}{2}-\\int-\\frac{\\mathrm{e}^{-x^{2}}}{2} \\mathrm{~d} x \\\\\n\n&=\\frac{\\sqrt{\\pi} \\operatorname{erf}(x)}{4}-\\frac{x \\mathrm{e}^{-x^{2}}}{2}+C\n\n\\end{aligned}"
So, "\\int x^{2} \\mathrm{e}^{-x^{2}} \\mathrm{~d} x=\\frac{\\sqrt{\\pi} \\operatorname{erf}(x)}{4}-\\frac{x \\mathrm{e}^{-x^{2}}}{2}+C"
And "\\int_{0}^{\\infty} x^{2} \\mathrm{e}^{-x^{2}} \\mathrm{~d} x=[\\frac{\\sqrt{\\pi} \\operatorname{erf}(x)}{4}-\\frac{x \\mathrm{e}^{-x^{2}}}{2}+C]_{0}^{\\infty}=\\frac{\\sqrt{\\pi}}{4}"
Β
Comments
Leave a comment