Show that β«10 (sin(1/x))/xn ππ₯ ; π₯ > 0 convergence absolutely, if π < 1.
We want to show that,
"\\int_{0}^{1} \\frac{(\\sin (1 \/ x))}{x^{n}} d x, x>0 \\text { converges }"
Absolutely if "n<1"
Let, "f(x)=\\frac{\\sin (1 \/ x)}{x^{n}}, n>0"
0 is the only point of infinite discontinuity and f does net keep the same sign in the interval [0,1].
"\\therefore \\quad|f(x)| \\&=\\frac{\\left|\\sin \\left(\\frac{1}{x}\\right)\\right|}{x^{n}}<\\frac{1}{x^{n}}"
Also, "\\int_{0}^{1} \\frac{1}{x^{n}} d x" converges when "n <1" .
Thus, "\\int_{0}^{1}\\left|\\frac{\\sin (1 \/ x)}{x^{n}}\\right| d x" converges if and only if"\\quad n>0"
Thus, The Integration "\\int_{0}^{1}\\left|\\frac{\\sin (1 \/ x)}{x^{* n}}\\right| d x" converges if and only if "n<1"
Or "\\int_{0}^{1} \\frac{\\sin (1 \/ x)}{x^{n}} d x" converges absolutely if "n<1".
Comments
Leave a comment