We want to show that,
∫01xn(sin(1/x))dx,x>0 converges
Absolutely if n<1
Let, f(x)=xnsin(1/x),n>0
0 is the only point of infinite discontinuity and f does net keep the same sign in the interval [0,1].
∴∣f(x)∣&=xn∣sin(x1)∣<xn1
Also, ∫01xn1dx converges when n<1 .
Thus, ∫01∣∣xnsin(1/x)∣∣dx converges if and only ifn>0
Thus, The Integration ∫01∣∣x∗nsin(1/x)∣∣dx converges if and only if n<1
Or ∫01xnsin(1/x)dx converges absolutely if n<1.
Comments