If π is a continuous function on [0,1], show that limπββ β« ππ(π₯) 1+π’2π₯ 2 1 0 ππ₯ = π 2 π(0).Β
Let
"I=\\displaystyle{\\int^{1}_{0}}\\frac{nf(x)}{1+u^2x^2}dx=I_1+I_2"
where
"I_1=\\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{nf(x)}{1+u^2x^2}dx"
and
"I_2=\\displaystyle{\\int^{1}_{n^{-1\/3}}}\\frac{nf(x)}{1+u^2x^2}dx"
"|f(x)|\u2264M" because f is continuous. We have:
"I_2\\le\\displaystyle{\\int^{1}_{n^{-1\/3}}}|\\frac{nf(x)}{1+u^2x^2}|dx\\le \\displaystyle{\\int^{1}_{n^{-1\/3}}}\\frac{nM}{1+u^2x^2}dx \\le \\displaystyle{\\int^{1}_{n^{-1\/3}}}\\frac{nM}{1+u^2(n^{-1\/3})^2}dx\\\\"
"=\\frac{nM}{1+n^2(n^{-1\/3})^2}(1-n^{-1\/3})=o(1)"
Put
"I_3=\\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{nf(0)}{1+n^2x^2}dx"
We have:
"|I_1-I_3|=|\\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{n(f(x)-f(0))}{1+n^2x^2}dx|\\le"
"\\le \\displaystyle{\\sup_{n\\in [0,n^{-1\/3}]}}|f(x)-f(0)|\\cdot \\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{ndx}{1+n^2x^2}dx=o(1)\\cdot \\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{d(nx)}{1+n^2x^2}dx="
"=o(1)\\cdot arctan(n\\cdot u^{-1\/3})=o(1)\\cdot O(1)"
Hence
"I=I_1+I_2=I_3+(I_1-I_3)+I_2=I_3+o(1)+o(1)"
where
"I_3=f(0)\\displaystyle{\\int^{n^{-1\/3}}_{0}}\\frac{d(nx)}{1+u^2x^2}dx=f(0)\\cdot arctan(n\\cdot u^{-1\/3})=f(0)\\frac{\\pi}{2}+o(1)"
So,
"I\\to f(0)\\frac{\\pi}{2}" as "n\\to \\infin"
Comments
Leave a comment