1.
∑ n = 1 ∞ n + 1 − n n \displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n} n = 1 ∑ ∞ n n + 1 − n
= ∑ n = 1 ∞ n + 1 − n n ( n + 1 + n n + 1 + n ) =\displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n}(\dfrac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}) = n = 1 ∑ ∞ n n + 1 − n ( n + 1 + n n + 1 + n )
= ∑ n = 1 ∞ 1 n ( n + 1 + n ) =\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n(\sqrt{n+1}+\sqrt{n})} = n = 1 ∑ ∞ n ( n + 1 + n ) 1
= ∑ n = 1 ∞ 1 n 3 / 2 ( 1 + 1 / n + 1 ) =\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)} = n = 1 ∑ ∞ n 3/2 ( 1 + 1/ n + 1 ) 1 The p-series ∑ n = 1 ∞ 1 n 3 / 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}} n = 1 ∑ ∞ n 3/2 1 is convergent (p=3/2).
1 n 3 / 2 ( 1 + 1 / n + 1 ) < 1 2 n 3 / 2 , n ≥ 1 \dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)}<\dfrac{1}{2n^{3/2}}, n\geq1 n 3/2 ( 1 + 1/ n + 1 ) 1 < 2 n 3/2 1 , n ≥ 1 Then the series ∑ n = 1 ∞ 1 n 3 / 2 ( 1 + 1 / n + 1 ) \displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)} n = 1 ∑ ∞ n 3/2 ( 1 + 1/ n + 1 ) 1 converges by the Comparison Test.
Therefore the series ∑ n = 1 ∞ n + 1 − n n \displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n} n = 1 ∑ ∞ n n + 1 − n converges by the Comparison Test.
2.
∑ n = 1 ∞ cos ( 1 n ) \displaystyle\sum_{n=1}^{\infin}\cos(\dfrac{1}{n}) n = 1 ∑ ∞ cos ( n 1 )
lim n → ∞ cos ( 1 n ) = cos ( 0 ) = 1 ≠ 0 \lim\limits_{n\to\infin}\cos(\dfrac{1}{n})=\cos(0)=1\not=0 n → ∞ lim cos ( n 1 ) = cos ( 0 ) = 1 = 0 Therefore the series ∑ n = 1 ∞ cos ( 1 n ) \displaystyle\sum_{n=1}^{\infin}\cos(\dfrac{1}{n}) n = 1 ∑ ∞ cos ( n 1 ) diverges by the Test for Divergence.
3.
∑ n = 1 ∞ sin ( n ) n \displaystyle\sum_{n=1}^{\infin}\dfrac{\sin(n)}{n} n = 1 ∑ ∞ n sin ( n ) Use the Dirichlet's Test
2 sin ( 1 ) ∑ n = 1 m sin ( n ) = ∑ n = 1 m ( cos ( n − 1 ) − cos ( n + 1 ) ) 2\sin(1)\displaystyle\sum_{n=1}^{m}\sin(n)=\displaystyle\sum_{n=1}^{m}(\cos(n-1)-\cos(n+1)) 2 sin ( 1 ) n = 1 ∑ m sin ( n ) = n = 1 ∑ m ( cos ( n − 1 ) − cos ( n + 1 ))
= ( cos ( 0 ) − cos ( 2 ) ) + ( cos ( 1 ) − cos ( 3 ) ) =(\cos(0)-\cos(2))+(\cos(1)-\cos(3)) = ( cos ( 0 ) − cos ( 2 )) + ( cos ( 1 ) − cos ( 3 ))
+ ( cos ( 2 ) − cos ( 4 ) ) + . . . + ( cos ( m − 2 ) − cos ( m ) ) +(\cos(2)-\cos(4))+...+(\cos(m-2)-\cos(m)) + ( cos ( 2 ) − cos ( 4 )) + ... + ( cos ( m − 2 ) − cos ( m ))
+ ( cos ( m − 1 ) − cos ( m + 1 ) ) +(\cos(m-1)-\cos(m+1)) + ( cos ( m − 1 ) − cos ( m + 1 ))
= 1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 ) =1+\cos(1)-\cos(m)-\cos(m+1) = 1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 ) Then
∑ n = 1 m sin ( n ) = 1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 ) 2 sin ( 1 ) \displaystyle\sum_{n=1}^{m}\sin(n)=\dfrac{1+\cos(1)-\cos(m)-\cos(m+1)}{2\sin(1)} n = 1 ∑ m sin ( n ) = 2 sin ( 1 ) 1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 )
∣ ∑ n = 1 m sin ( n ) ∣ = ∣ 1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 ) ∣ 2 sin ( 1 ) \bigg|\displaystyle\sum_{n=1}^{m}\sin(n)\bigg|=\dfrac{|1+\cos(1)-\cos(m)-\cos(m+1)|}{2\sin(1)} ∣ ∣ n = 1 ∑ m sin ( n ) ∣ ∣ = 2 sin ( 1 ) ∣1 + cos ( 1 ) − cos ( m ) − cos ( m + 1 ) ∣
≤ 1 + 1 + 1 + 1 2 sin ( 1 ) = 2 sin ( 1 ) = M \leq \dfrac{1+1+1+1}{2\sin(1)}=\dfrac{2}{\sin(1)}=M ≤ 2 sin ( 1 ) 1 + 1 + 1 + 1 = sin ( 1 ) 2 = M Let a n = 1 n . a_n=\dfrac{1}{n}. a n = n 1 . Then
a n + 1 = 1 n + 1 < 1 n = a n , n ≥ 1 a_{n+1}=\dfrac{1}{n+1}<\dfrac{1}{n}=a_n, n\geq1 a n + 1 = n + 1 1 < n 1 = a n , n ≥ 1 lim n → ∞ a n = lim n → ∞ 1 n = 0 \lim\limits_{n\to\infin}a_n=\lim\limits_{n\to\infin}\dfrac{1}{n}=0 n → ∞ lim a n = n → ∞ lim n 1 = 0 Therefore the series ∑ n = 1 ∞ sin ( n ) n \displaystyle\sum_{n=1}^{\infin}\dfrac{\sin(n)}{n} n = 1 ∑ ∞ n sin ( n ) converges by the Dirichlet's Test.
4.
∑ n = 1 ∞ ( n ! ) 2 ( 2 n ) ! \displaystyle\sum_{n=1}^{\infin}\dfrac{(n!)^2}{(2n)!} n = 1 ∑ ∞ ( 2 n )! ( n ! ) 2 Apply the Ratio Test.
lim n → ∞ ( ( n + 1 ) ! ) 2 ( 2 ( n + 1 ) ) ! ( n ! ) 2 ( 2 n ) ! = lim n → ∞ ( n + 1 ) 2 ( 2 n + 1 ) ( 2 n + 2 ) = 1 4 < 1 \lim\limits_{n\to\infin}\dfrac{\dfrac{((n+1)!)^2}{(2(n+1))!}}{\dfrac{(n!)^2}{(2n)!}}=\lim\limits_{n\to\infin}\dfrac{(n+1)^2}{(2n+1)(2n+2)}=\dfrac{1}{4}<1 n → ∞ lim ( 2 n )! ( n ! ) 2 ( 2 ( n + 1 ))! (( n + 1 )! ) 2 = n → ∞ lim ( 2 n + 1 ) ( 2 n + 2 ) ( n + 1 ) 2 = 4 1 < 1 Therefore the series ∑ n = 1 ∞ ( n ! ) 2 ( 2 n ) ! \displaystyle\sum_{n=1}^{\infin}\dfrac{(n!)^2}{(2n)!} n = 1 ∑ ∞ ( 2 n )! ( n ! ) 2 converges by the RatioTest.
5.
∑ n = 1 ∞ ( n n + 1 ) n 2 \displaystyle\sum_{n=1}^{\infin}(\dfrac{n}{n+1})^{n^2} n = 1 ∑ ∞ ( n + 1 n ) n 2 Use the Root Test.
lim n → ∞ ( n n + 1 ) n 2 n = lim n → ∞ ( 1 − 1 n ) n = e − 1 = 1 e < 1 \lim\limits_{n\to\infin}\sqrt[n]{(\dfrac{n}{n+1})^{n^2}}=\lim\limits_{n\to\infin}(1-\dfrac{1}{n}
)^n=e^{-1}=\dfrac{1}{e}<1 n → ∞ lim n ( n + 1 n ) n 2 = n → ∞ lim ( 1 − n 1 ) n = e − 1 = e 1 < 1 Therefore the series ∑ n = 1 ∞ ( n n + 1 ) n 2 \displaystyle\sum_{n=1}^{\infin}(\dfrac{n}{n+1})^{n^2} n = 1 ∑ ∞ ( n + 1 n ) n 2 converges by the Root Test.
Comments