Find the convergence of the following series,
1.
"\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{\\sqrt{n+1}-\\sqrt{n}}{n}""=\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{\\sqrt{n+1}-\\sqrt{n}}{n}(\\dfrac{\\sqrt{n+1}+\\sqrt{n}}{\\sqrt{n+1}+\\sqrt{n}})"
"=\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{n(\\sqrt{n+1}+\\sqrt{n})}"
"=\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{n^{3\/2}(\\sqrt{1+1\/n}+1)}"
The p-series "\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{n^{3\/2}}" is convergent (p=3/2).
Then the series "\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{1}{n^{3\/2}(\\sqrt{1+1\/n}+1)}" converges by the Comparison Test.
Therefore the series "\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{\\sqrt{n+1}-\\sqrt{n}}{n}" converges by the Comparison Test.
2.
"\\displaystyle\\sum_{n=1}^{\\infin}\\cos(\\dfrac{1}{n})""\\lim\\limits_{n\\to\\infin}\\cos(\\dfrac{1}{n})=\\cos(0)=1\\not=0"
Therefore the series "\\displaystyle\\sum_{n=1}^{\\infin}\\cos(\\dfrac{1}{n})" diverges by the Test for Divergence.
3.
"\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{\\sin(n)}{n}"Use the Dirichlet's Test
"=(\\cos(0)-\\cos(2))+(\\cos(1)-\\cos(3))"
"+(\\cos(2)-\\cos(4))+...+(\\cos(m-2)-\\cos(m))"
"+(\\cos(m-1)-\\cos(m+1))"
"=1+\\cos(1)-\\cos(m)-\\cos(m+1)"
Then
"\\bigg|\\displaystyle\\sum_{n=1}^{m}\\sin(n)\\bigg|=\\dfrac{|1+\\cos(1)-\\cos(m)-\\cos(m+1)|}{2\\sin(1)}"
"\\leq \\dfrac{1+1+1+1}{2\\sin(1)}=\\dfrac{2}{\\sin(1)}=M"
Let "a_n=\\dfrac{1}{n}." Then
"a_{n+1}=\\dfrac{1}{n+1}<\\dfrac{1}{n}=a_n, n\\geq1""\\lim\\limits_{n\\to\\infin}a_n=\\lim\\limits_{n\\to\\infin}\\dfrac{1}{n}=0"Therefore the series "\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{\\sin(n)}{n}" converges by the Dirichlet's Test.
4.
"\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{(n!)^2}{(2n)!}"Apply the Ratio Test.
Therefore the series "\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{(n!)^2}{(2n)!}" converges by the RatioTest.
5.
"\\displaystyle\\sum_{n=1}^{\\infin}(\\dfrac{n}{n+1})^{n^2}"Use the Root Test.
Therefore the series "\\displaystyle\\sum_{n=1}^{\\infin}(\\dfrac{n}{n+1})^{n^2}" converges by the Root Test.
Comments
Leave a comment