Convergence test for "\\displaystyle\\sum_{n=1}^\\infty \\frac{sin(n)}{n}".
Let us show that the series "\\sum\\limits_{n=1}^{\\infty}\\frac{\\sin(n)}n" is divergent.
Note that "|\\sin x|\u2a7e\\frac{1}2" for "x\u2208I_k=[\\frac{\u03c0}6+k\u03c0,\u03c0\u2212\\frac{\u03c0}6+k\u03c0]."
Let us find the length of every "I_k:"
"|I_k|=\u03c0\u2212\\frac{2\u03c0}6=\\frac{2\u03c0}3>2."
We conclude that every "I_k" contains at least one natural number "n_k."
Then
"\\sum\\limits_{n=1}^N\\frac{|\\sin(n)|}n\n\u2a7e\\frac{1}2\\sum\\limits_{n_k\\le N}\\frac{1}{n_k}\\to\\infty" when "N\u2192\u221e"
since the harmonic series "\\sum\\limits_{n=1}^{\u221e}\\frac{1}n" diverges.
Comments
Leave a comment