Find the maclaurin series expansion of f(x)= 1/1+x hence or otherwise find the expansion of 1/1+x^2 by integrating both sides of your result, find the series expansion of arctanx, by also putting x=1 find the expression Ο/4 hence show that Ο=3.142
Maclaurin series expansion
Then
"=\\displaystyle\\sum_{k=0}^\\infin (-1)^kt^{2k}, -1<t<1"
Integrate both sides
"\\arctan x=\\displaystyle\\sum_{k=0}^\\infin \\dfrac{(-1)^kx^{2k+1}}{2k+1}, -1\\leq x\\leq1"
"\\arctan 1=\\displaystyle\\sum_{k=0}^\\infin \\dfrac{(-1)^k(1)^{2k+1}}{2k+1}""\\dfrac{\\pi}{4}=\\arctan 1=\\displaystyle\\sum_{k=0}^\\infin \\dfrac{(-1)^k}{2k+1}"
"=1-\\dfrac{1}{3}+\\dfrac{1}{5}-\\dfrac{1}{7}+\\dfrac{1}{9}-\\dfrac{1}{11}+..."
"\\pi=4(1-\\dfrac{1}{3}+\\dfrac{1}{5}-\\dfrac{1}{7}+\\dfrac{1}{9}-\\dfrac{1}{11}+...)"
"\\pi\\approx3.1416"
Comments
Leave a comment