Evaluate
Lim 3nΣr=1 n^2/(4n+r)^3
n→∞
Let the solution of our equation be of the form y=\displaystyle\sum_{n=0}^{\infty}a_nx^ny=n=0∑∞anxn .....(1)
From which,
y'=\displaystyle\sum_{n=0}^{\infty}na_nx^{n-1}=\displaystyle\sum_{n=1}^{\infty}na_nx^{n-1}y′=n=0∑∞nanxn−1=n=1∑∞nanxn−1
y''=\displaystyle\sum_{n=0}^{\infty}n(n-1)a_nx^{n-2}=\displaystyle\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}y′′=n=0∑∞n(n−1)anxn−2=n=2∑∞n(n−1)anxn−2
We then substitute the above expressions in our equation
\displaystyle\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}-\displaystyle\sum_{n=1}^{\infty}na_nx^{n}+\displaystyle\sum_{n=0}^{\infty}a_nx^n=0n=2∑∞n(n−1)anxn−2−n=1∑∞nanxn+n=0∑∞anxn=0
\displaystyle\sum_{n=0}^{\infty}(n+1)(n+2)a_{n+2}x^{n}-\displaystyle\sum_{n=1}^{\infty}na_nx^n+\displaystyle\sum_{n=1}^{\infty}a_nx^n+a_0=0n=0∑∞(n+1)(n+2)an+2xn−n=1∑∞nanxn+n=1∑∞anxn+a0=0
2a_2+6a_3x+\displaystyle\sum_{n=1}^{\infty}[(n+1)(n+2)a_{n+2}-na_n+a_n]x^n+a_0=02a2+6a3x+n=1∑∞[(n+1)(n+2)an+2−nan+an]xn+a0=0
Comparing both sides of equal powers of x we have,
2a_2+a_0=0\implies a_2=-\frac{1}{2}a_02a2+a0=0⟹a2=−21a0
6a_3=0\implies a_3=06a3=0⟹a3=0
Comments
Leave a comment