Using ∈-δ arguments, prove that
Lim (x^3+1) = 9/8
x→1/2
Given "\\epsilon" > 0, we have to find "\\delta>0" such that
if "0< |x-\\frac{1}{2}|< \\delta" then | x³+1"-\\frac{9}{8}|" |<"\\epsilon"
Now | x³+1 "-\\frac{9}{8}|| = |x\u00b3-\\frac{1}{8}|"
= |(x "-\\frac{1}{2})(x\u00b2+\\frac{1}{2}x+\\frac{1}{4})|"
If |x"-\\frac{1}{2}|<\\frac{1}{2}" that means "-\\frac{1}{2} <x-\\frac{1}{2} < \\frac{1}{2}" then
0 < x < 1 <=> "x\u00b2+\\frac{1}{2}x +\\frac{1}{4} < 1\u00b2+ \\frac{1}{2} +\\frac{1}{4}= \\frac{7}{4}"
Therefore |x³+1"-\\frac{9}{8}| = |x- \\frac{1}{2}|" (x²+"-\\frac{1}{2})(x\u00b2+\\frac{1}{2}x+\\frac{1}{4})< \\frac{7}{4}|x-\\frac{1}{2}|"
Let us choose "\\delta =" min { "\\frac{1}{2} , \\frac{4\\epsilon}{7}" }
then "0< |x-\\frac{1}{2}|< \\delta" => |x³+1"-\\frac{9}{8}|| < \\frac{4\\epsilon}{7}.\\frac{7}{4}=\\epsilon"
Thus by the "\\delta-\\epsilon" method
"lim_{x->\\frac{1}{2}}(x\u00b3+1) = \\frac{9}{8}"
Comments
Leave a comment