The set
"\\Big\\{\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\} \\cup\\Big\\{1+\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\}" is an infinite set, which has a finite limit.
We can see this directly or we can use the assertion of finding limits in calculus.
For:
"\\Big\\{\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\}\\\\\n\\lim_{n \\rightarrow \\infty}{\\frac{1}{n}} = 0"
While for:
"\\Big\\{1+\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\}\\\\\n\\lim_{n \\rightarrow \\infty}{1+\\frac{1}{n}} = 1"
Thus:
"\\Big\\{\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\} \\cup\\Big\\{1+\\frac{1}{n}\\big| n\\in \\mathbb{Z}^+\\Big\\}= \\{0,1\\}" Which is finite.
Comments
Leave a comment