Examine the function, f (x) = (x +1)3 (x − 3)2 for extreme values.
Domain: "(-\\infin, \\infin)"
"=3(x+1)^2(x-3)^2+2(x-3)(x+1)^3"
"=(x+1)^2(x-3)(3(x-3)+2(x+1))"
"=(x+1)^2(x-3)(5x-7)"
Find the critical number(s)
"x_1=-1, x_2=1.4, x_3=3"
Critical numbers: "-1, 1.4, 3"
If "x<-1, f'(x)>0, f(x)" increases.
If "-1<x<1.4, f'(x)>0, f(x)" increases.
If "1.4<x<3, f'(x)<0, f(x)" decreases.
If "x>3, f'(x)>0, f(x)" increases.
"=2(x+1)(x-3)(5x-7)+(x+1)^2(5x-7)"
"+5(x+1)^2(x-3)"
"=(x+1)(10x^2-14x-30x+42)"
"+(x+1)(5x^2-7x+5x-7)"
"=(x+1)(20x^2-56x+20)"
"f''(-1)=0"
"f''(1.4)=-46.08<0"
The function "f(x)" has a local maximum at "x=1.4."
The function "f(x)" has a local minimum at "x=3."
The function "f(x)" has neither maximum nor minimum at "x=-1."
Comments
Leave a comment