Answer to Question #203165 in Real Analysis for Rajkumar

Question #203165

Prove that the function f defined by

f(x) = -2, if is rational

f(x) = 2, if is irrational

is discontinuous,∀ x ∈ R, using the sequential definition of continuity.


1
Expert's answer
2021-06-10T08:30:03-0400

Given

Let "f: \\R \\to \\R" denote the  function:

"\\forall x \\in \\R: f( x) = \\begin {cases} -2 & : x \\in Q \\\\ 2 & : x \\in Q^c \\end {cases}"

where "Q"  denotes the set of rational numbers.

Then "f"  is discontinuous at every"x \\in \\R"


suppose -2=c and 2=d {for easily proof for generalization}

----------------------------------------------------------------------------

Proof

Discontinuity for rational numbers:-

Let "\\epsilon = \\frac {| c-d| } 2"

let "x \\in Q"

Let "\\delta \\in \\R_{>0}"  be arbitrary.

Let "y\u2208Q"  such that "|x\u2212y|<\u03b4"


"Without \\space loss \\space of \\space generality, let y>x."

"From \\space Between \\space two \\space Rational \\space Numbers \\space exists \\space Irrational \\space Number:\\\\\n\n\u2203z\u2208R\u2216Q:x<z<y"


"and \\space so:\\\\\n\n|f(x)\u2212f(z)|=|c\u2212d|>\u03f5\\\\\nSimilarly if y<x:\\\\\n\n\n\u2203z\u2208R\u2216Q:y<z<x:|f(x)\u2212f(z)|>\u03f5"


"and \\space by \\space definition \\space of \\space continuity \\space f \\space is \\space discontinuous \\space at \\space x.\\\\"


again now

Discontinuity for irrational numbers:-

"Let \\space x\u2208R\u2216Q.\\\\\n\n\nLet \\space \u03b4\u2208R>0 \\space be \\space arbitrary.\\\\\n\n\n\nLet \\space y\u2208R\u2216Q \\space such \\space that \\space |x\u2212y|<\u03b4.\\\\\n\nWithout \\space loss \\space of \\space generality, \\space let y>x.\\\\\n\n\nFrom \\space Between \\space two \\space Real \\space Numbers \\space exists \\space Rational \\space Number:\\\\\n\n\n\u2203z\u2208Q:x<z<y\\\\\nand \\space so:\\\\\n\n|f(x)\u2212f(z)|=|c\u2212d|>\u03f5\\\\\nSimilarly \\space if \\space y<x:\\\\\n\n\n\u2203z\u2208Q:y<z<x:|f(x)\u2212f(z)|>\u03f5\\\\\nand \\space by definition \\space of \\space continuity \\space f \\space is \\space \ndiscontinuous \\space at \\space x.\\\\\n\n\u25a1\\\\\n\n\nf \\space has \\space been \\space shown \\space to \\space be \\space discontinuous \\space at \\space all \\space x\u2208R \\\\ \\space whether \\space x \\space is \\space rational \\space or \\space irrational. \\space \\\\\n\nHence \\space the \\space result.\\\\"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS