Answer to Question #203165 in Real Analysis for Rajkumar

Question #203165

Prove that the function f defined by

f(x) = -2, if is rational

f(x) = 2, if is irrational

is discontinuous,∀ x ∈ R, using the sequential definition of continuity.


1
Expert's answer
2021-06-10T08:30:03-0400

Given

Let f:RRf: \R \to \R denote the  function:

xR:f(x)={2:xQ2:xQc\forall x \in \R: f( x) = \begin {cases} -2 & : x \in Q \\ 2 & : x \in Q^c \end {cases}

where QQ  denotes the set of rational numbers.

Then ff  is discontinuous at everyxRx \in \R


suppose -2=c and 2=d {for easily proof for generalization}

----------------------------------------------------------------------------

Proof

Discontinuity for rational numbers:-

Let ϵ=cd2\epsilon = \frac {| c-d| } 2

let xQx \in Q

Let δR>0\delta \in \R_{>0}  be arbitrary.

Let yQy∈Q  such that xy<δ|x−y|<δ


Without loss of generality,lety>x.Without \space loss \space of \space generality, let y>x.

From Between two Rational Numbers exists Irrational Number:zRQ:x<z<yFrom \space Between \space two \space Rational \space Numbers \space exists \space Irrational \space Number:\\ ∃z∈R∖Q:x<z<y


and so:f(x)f(z)=cd>ϵSimilarlyify<x:zRQ:y<z<x:f(x)f(z)>ϵand \space so:\\ |f(x)−f(z)|=|c−d|>ϵ\\ Similarly if y<x:\\ ∃z∈R∖Q:y<z<x:|f(x)−f(z)|>ϵ


and by definition of continuity f is discontinuous at x.and \space by \space definition \space of \space continuity \space f \space is \space discontinuous \space at \space x.\\


again now

Discontinuity for irrational numbers:-

Let xRQ.Let δR>0 be arbitrary.Let yRQ such that xy<δ.Without loss of generality, lety>x.From Between two Real Numbers exists Rational Number:zQ:x<z<yand so:f(x)f(z)=cd>ϵSimilarly if y<x:zQ:y<z<x:f(x)f(z)>ϵand bydefinition of continuity f is discontinuous at x.f has been shown to be discontinuous at all xR whether x is rational or irrational. Hence the result.Let \space x∈R∖Q.\\ Let \space δ∈R>0 \space be \space arbitrary.\\ Let \space y∈R∖Q \space such \space that \space |x−y|<δ.\\ Without \space loss \space of \space generality, \space let y>x.\\ From \space Between \space two \space Real \space Numbers \space exists \space Rational \space Number:\\ ∃z∈Q:x<z<y\\ and \space so:\\ |f(x)−f(z)|=|c−d|>ϵ\\ Similarly \space if \space y<x:\\ ∃z∈Q:y<z<x:|f(x)−f(z)|>ϵ\\ and \space by definition \space of \space continuity \space f \space is \space discontinuous \space at \space x.\\ □\\ f \space has \space been \space shown \space to \space be \space discontinuous \space at \space all \space x∈R \\ \space whether \space x \space is \space rational \space or \space irrational. \space \\ Hence \space the \space result.\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment