Prove that the function f defined by
f(x) = -2, if is rational
f(x) = 2, if is irrational
is discontinuous,∀ x ∈ R, using the sequential definition of continuity.
Given
Let "f: \\R \\to \\R" denote the function:
"\\forall x \\in \\R: f( x) = \\begin {cases} -2 & : x \\in Q \\\\ 2 & : x \\in Q^c \\end {cases}"
where "Q" denotes the set of rational numbers.
Then "f" is discontinuous at every"x \\in \\R"
suppose -2=c and 2=d {for easily proof for generalization}
----------------------------------------------------------------------------
Proof
Discontinuity for rational numbers:-
Let "\\epsilon = \\frac {| c-d| } 2"
let "x \\in Q"
Let "\\delta \\in \\R_{>0}" be arbitrary.
Let "y\u2208Q" such that "|x\u2212y|<\u03b4"
"Without \\space loss \\space of \\space generality, let y>x."
"From \\space Between \\space two \\space Rational \\space Numbers \\space exists \\space Irrational \\space Number:\\\\\n\n\u2203z\u2208R\u2216Q:x<z<y"
"and \\space so:\\\\\n\n|f(x)\u2212f(z)|=|c\u2212d|>\u03f5\\\\\nSimilarly if y<x:\\\\\n\n\n\u2203z\u2208R\u2216Q:y<z<x:|f(x)\u2212f(z)|>\u03f5"
"and \\space by \\space definition \\space of \\space continuity \\space f \\space is \\space discontinuous \\space at \\space x.\\\\"
again now
Discontinuity for irrational numbers:-
"Let \\space x\u2208R\u2216Q.\\\\\n\n\nLet \\space \u03b4\u2208R>0 \\space be \\space arbitrary.\\\\\n\n\n\nLet \\space y\u2208R\u2216Q \\space such \\space that \\space |x\u2212y|<\u03b4.\\\\\n\nWithout \\space loss \\space of \\space generality, \\space let y>x.\\\\\n\n\nFrom \\space Between \\space two \\space Real \\space Numbers \\space exists \\space Rational \\space Number:\\\\\n\n\n\u2203z\u2208Q:x<z<y\\\\\nand \\space so:\\\\\n\n|f(x)\u2212f(z)|=|c\u2212d|>\u03f5\\\\\nSimilarly \\space if \\space y<x:\\\\\n\n\n\u2203z\u2208Q:y<z<x:|f(x)\u2212f(z)|>\u03f5\\\\\nand \\space by definition \\space of \\space continuity \\space f \\space is \\space \ndiscontinuous \\space at \\space x.\\\\\n\n\u25a1\\\\\n\n\nf \\space has \\space been \\space shown \\space to \\space be \\space discontinuous \\space at \\space all \\space x\u2208R \\\\ \\space whether \\space x \\space is \\space rational \\space or \\space irrational. \\space \\\\\n\nHence \\space the \\space result.\\\\"
Comments
Leave a comment