Using the principle of mathematical induction, prove that
(n5/5) + (n3/3) + (7n/15) is a natural number, ∀ n ∈ N .
Let "P(n)=\\dfrac{n^{5}}{5}+\\dfrac{n^{3}}{3}+\\dfrac{7n}{15}" is a natural number for all "n" "\u2208N"
now putting "n=1" , we get -
"P(1)=\\dfrac{1^{5}}{5}+\\dfrac{1^{3}}{3}+\\dfrac{7\\times1}{15}=\\dfrac{15}{15}=1" .
which is a natural number .
Hence , P(1) is true .
Let us prove that P(n) is true for some natural number n=k.
"\\therefore" "P(k)=\\dfrac{k^{5}}{5}+\\dfrac{k^{3}}{3}+\\dfrac{7k}{15}" is a natural number ..........(1)
Now we have to prove that "P(k+1)" is true.
"P(k+1)=" "\\dfrac{(k+1)^{5}}{5}+\\dfrac{(k+1)^{3}}{3}+\\dfrac{7(k+1)}{15}"
"=" "\\dfrac{k^{5}+5k^{4}+10k^{3}+10k^{2}+5k+1}{5}+\\dfrac{k^{3}+1+3k^{2}+3k}{3}+\\dfrac{7k+7}{15}"
"=\\dfrac{k^{5}}{5}+\\dfrac{k^{3}}{3}+\\dfrac{7k}{15}+" "\\dfrac{5k^{4}+10k^{3}+10k^{2}+5k+1}{5}+" "\\dfrac{1+3k^{2}+3k}{3}+\\dfrac{7}{15}"
"=" "\\dfrac{k^{5}}{5}+\\dfrac{k^{3}}{3}+\\dfrac{7k}{15} \\ +k^{4}+2k^{3}+2k^{2}+k+k^{2}+k+\\dfrac{1}{5}+\\dfrac{1}{3}+\\dfrac{7}{15}"
"=" "\\dfrac{k^{5}}{5}+\\dfrac{k^{3}}{3}+\\dfrac{7k}{15}+k^{4}+2k^{3}+3k^{2}+2k+1"
which is a natural number .....by using .....(1)
Hence , "P(k+1)" is true whenever P(k) is true.
so by principal of mathematical induction
"P(n)" is true for any natural number n .
Comments
Leave a comment