Find lim x→0 (1-cos2x) / (x2 sinx2)
Let us find the limit limx→01−cos2xx2sinx2:\lim\limits_{ x\to 0} \frac{1-\cos^2x}{ x^2 \sin x^2}:x→0limx2sinx21−cos2x:
limx→01−cos2xx2sinx2=limx→0sin2xx2sinx2=limx→0sinxx⋅limx→0sinxx⋅limx→01sinx2=1⋅1⋅∞=∞.\lim\limits_{ x\to 0} \frac{1-\cos^2x}{ x^2 \sin x^2}= \lim\limits_{ x\to 0} \frac{\sin^2x}{ x^2 \sin x^2}= \lim\limits_{ x\to 0} \frac{\sin x}{ x}\cdot \lim\limits_{ x\to 0} \frac{\sin x}{ x}\cdot \lim\limits_{ x\to 0} \frac{1}{ \sin x^2}=1\cdot 1\cdot \infty=\infty.x→0limx2sinx21−cos2x=x→0limx2sinx2sin2x=x→0limxsinx⋅x→0limxsinx⋅x→0limsinx21=1⋅1⋅∞=∞.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment