Prove that
x<log(1/1-x)< x/1-x, 0<x<1
Solution:-
Let "f(x)=\\log (\\frac1{1-x})" in [0, 1]
Since f(x) satisfies the condition of L.M.V. theorem in [0, 1], there exists "\\theta(0<\\theta<1)" such that
"\\dfrac{f(x)-f(0)}{x-0}=f^{\\prime}(\\theta x)\n\\\\\n\\Rightarrow \\quad \\dfrac{\\log (\\frac1{1-x})}{x}=\\dfrac{}{}\\dfrac{1}{1-\\theta x}"
"\\Rightarrow \\quad \\log (\\frac1{1-x})=\\dfrac{x}{1-\\theta x} \\quad \\ldots (i)"
Now, "\\quad 0<\\theta<1, 0<x<1 \n\\Rightarrow \\theta x<x"
"\\Rightarrow \\quad -\\theta x>-x\n\\\\\\Rightarrow \\quad 1-\\theta x>1-x\n\\\\\n\\Rightarrow \\quad \\frac{1}{1-\\theta x}<\\frac{1}{1-x}\n\\\\\\Rightarrow \\quad \\frac{x}{1-\\theta x}<\\frac{x}{1-x}\n \\quad \\ldots (ii)"
Again "\\quad 0<\\theta<1, 0<x<1"
"\\Rightarrow \\quad \\theta x>0\n\\\\\\Rightarrow \\quad -\\theta x<0\n\\\\ \\Rightarrow \\quad 1-\\theta x<1\n\\\\\n\\Rightarrow \\quad \\frac{1}{1-\\theta x}>1\n\\\\\n\\Rightarrow \\quad \\frac{x}{1-\\theta x}>x \\quad \\ldots (iii)"
From (i), (ii) and (iii), we get, "x< \\log (\\frac1{1-x})<\\dfrac{x}{1-x}, 0<x<1"
Comments
Leave a comment