Show that sinx and cosx are a bound variation on a finite interval
"\\text{We know , if a function is Lipschitz function then it is bounded variation.}\\newline \n\\text{Given,} f_1(x)=sinx. \\,\\\\\n|f_1(x_1)-f_1(x_2)|\\newline\n=|sin(x_1)-sin(x_2)|\\hspace{1cm}(\\text{By trigonometry identity}\\newline\n=|2 cos(\\frac{x_1+x_2}{2}) sin(\\frac{x_1-x_2}{2})|\\newline\n\\leq|2|.1.|\\frac{x_1-x_2}{2}|\\newline\n=|x_1-x_2|\\newline \\text{\nwe get k=1.}\\newline \\text{\nTherefore, the given function is lipschitz function.}\\newline \n\\text{This implies, the given function is bounded variation.}\n\\text{Given,} f_2(x)=cosx.\\\\\n|f_1(x_1)-f_1(x_2)|\\newline\n=|cos(x_1)-cos(x_2)|\\hspace{1cm}(\\text{By trigonometry identity}\\newline\n=|-2 sin(\\frac{x_1+x_2}{2}) sin(\\frac{x_1-x_2}{2})|\\newline\n\\leq|2|.1.|\\frac{x_1-x_2}{2}|\\newline\n=|x_1-x_2|\\newline \\text{\nwe get k=1.}\\newline \\text{\nTherefore, the given function is lipschitz function.}\\newline \n\\text{This implies, the given function is bounded variation.}"
Comments
Leave a comment