Consider the sequence {xn}, which is defined by
x1 = 1, xn+1 = xn +
1
x1 + x2 + · · · + xn
, n ∈ N.
Does {xn} converge? Justify your answer.
(2)
? ? ? ? ?
"x_1=1,x_{n+1}=x_n+1, x_1+x_2+....+x_n\\in N"
Given sequence is-
"x_{n+1}=x_n+1"
"\\Rightarrow x_2=x_1+1=2\n\n\n\\\\\n\\Rightarrow x_3=x_2+1=2+1=3"
We get the sequence -
"1,2,3,4....,n"
The "n^{th}" term is-
"a_n=1+(n-1)1=n"
Using ratio test-
"lim_{n\\to \\infty}\\dfrac{a_{n+1}}{a_n}=lim_{n\\to \\infty}\\dfrac{n+1}{n}"
"=lim_{n\\to \\infty} 1+\\dfrac{1}{n}\\\\[9pt]=1"
Hence The given sequence "x_n" converges to 1.
Comments
Leave a comment