Find the area of the portion of the paraboloid x=4-y²-z²that lies above the ring 1<=y²+z²<=4in the yz plane.
For any point "(x,y,z)" on the surface "x=4-y^2-z^2"
"F=x+y^2+z^2-4"
Then,
"\\triangledown F=i+yj+2zk"
"|\\triangledown F|=\\sqrt{1+4y^2+4z^2}"
Here, "p=i, \\ |\\triangledown F\\cdot p|=|1|=1"
Surface of paraboloid "x=4-y^2-z^2" that lies above the ring "1\\leq y^2+z^2\\leq 4" in the y-z plane.
Take "y=rcos\\theta,\\ z=rsin\\theta\\ \\ then\\ \\ 1\\leq r^2\\leq 4"
Then, "dydz=rdrd\\theta,\\ 1\\leq r\\leq 2\\ and\\ \\ 0\\leq\\theta\\leq 2\\theta"
"\\therefore \\ \\ Surface\\ area\\ \\ S=\\int\\int_R\\dfrac{|\\triangledown F|}{|\\triangledown F\\cdot p|}dA=\\int\\int_R\\sqrt{1+4y^2+4z^2}dydz"
"= \\int_{\\theta=0}^{2\\pi}\\int_{r=1}^2\\sqrt{1+4r^2}rdrd\\theta\\\\\\ \\\\=\\dfrac{1}{8}\\int_{\\theta =0}^{2\\pi}\\int_{r=1}^2\\dfrac{d}{dr}(1+4r^2)(1+4r^2)^{\\frac{1}{2}}drd\\theta\\\\\\ \\\\=\\dfrac{1}{8}\\int_{\\theta =0}^{2\\pi}\\dfrac{(1+4r^2)^{3\/2}}{3\/2}|_{r=1}^{2}d\\theta\\\\\\ \\\\=\\dfrac{1}{12}\\int_{\\theta=0}^{2\\pi}(17\\sqrt{17}-5\\sqrt 5)d\\theta\\\\\\ \\\\=\\dfrac{(17\\sqrt{17}-5\\sqrt 5)\\pi}{6}"
Comments
Leave a comment