Define uniform convergence of a sequence of functions. Discuss the uniform convergence of the sequence nx^2+1/nx+1 the interval  [1. 2]
In a hyper-real context, uniform convergence allows for a simpler description. So, if is infinitely close to for all x in the space of and all infinite m, a sequence converges to f uniformly.(For a related concept of uniform continuity, see micro continuity)
"f(x)=\\frac{nx^2+1}{nx+1}"
"\\lim\\limits_{x \\to \\infin}f_n(x)=\\lim\\limits_{x \\to \\infin}[\\frac{nx^2+1}{nx+1}]=\\lim\\limits_{x \\to \\infin}[\\frac{\\frac{n}{n}x^2+\\frac{1}{n}}{\\frac{nx}{n}+\\frac{1}{n}}]=\\lim\\limits_{x \\to \\infin}[\\frac{x^2+\\frac{1}{n}}{x+\\frac{1}{n}}]=\\lim\\limits_{x \\to \\infin}[\\frac{x^2+\\frac{1}{\\infin}}{x+\\frac{1}{\\infin}}]= x"
When x=0
"f_n(x)=0"
Therefore, "f(x)={x \\space if \\space x \\not =0\\brack 0 \\space if \\space x=0}"
"\\lim\\limits_{x \\to \\infin}f_n(x)= f(x)" for all x.
To prove that the above convergence is not pointwise
Suppose that "f_n \\to f" uniformly
Therefore, "\\exist \\varepsilon >0, \\exist x>[1,2], \\forall N \\epsilon \\N, \\exist n> N"
"|f_n(x)-f(x)|< \\varepsilon"
Now , taking "\\varepsilon = \\frac{1}{10}, x=\\frac{1}{\\sqrt{n}}" and n=N+1
Therefore, "|\\frac{nx^2+1}{nx+1}-x|=\\frac{1-x}{nx+1}>\\varepsilon=\\frac{1}{10}"
Which is a contradiction to the fact that "f_n(x)" converges uniformly
Hence , "f_n(x)" does not converge to f uniformly.
Comments
Leave a comment