Prove that
lim n→∞ [ 1/ √(2n-1) + 1/ √(4n-22) + 1/ √(6n-32) +.... + 1/n ] = π /2
"lim _{n\u2192\u221e} [ \\frac{1}{\\sqrt{2n-1}}+\\frac{1}{\\sqrt{4n-2^2}}+\\frac{1}{\\sqrt{6n-3^2}}+\u2022\u2022\u2022+\\frac{1}{n}]=lim _{n\u2192\u221e}\\sum_{k=1 } ^n [ \\frac{1}{\\sqrt{2kn-k^2}}]\\\\\n=lim _{n\u2192\u221e}\\sum_{k=1 } ^n \\frac{1}{n}\n \\frac{1}{\\sqrt{2(\\frac{k}{n})-(\\frac{k}{n})\n^2}}\\\\\n\\text{By integral test,}\\\\\n\\int_0^1 \\frac{1}{\\sqrt{2x-x^2}}dx\\\\\n=\\int_0^1 \\frac{1}{\\sqrt{1-(x-1)^2}}dx\\\\\nPut \\space x-1=t\\implies dx=dt\\\\\n\\int_{-1}^0 \\frac{1}{\\sqrt{1-t^2}}dt\\\\\n=sin^{-1}t]_{-1}^0\\\\\n=sin^{-1}(0)-sin^{-1}(-1)\\\\\n=0-(-\\frac{\\pi}{2})\\\\\n=\\frac{\\pi}{2}"
Comments
Leave a comment