Examine the convergence of the following series:
i) (3×4)/52 + (5×6)/72 + (7×8)/92....
ii) 1 + 4x + 42x2 + 43x3 +....(x > 0)
Use the Test for Divergence
"=\\lim\\limits_{n\\to \\infin}a_n\\dfrac{(2+\\dfrac{1}{n})(2+\\dfrac{2}{n})}{(2n+\\dfrac{3}{n})^2}"
"=\\dfrac{2(2)}{(2)^2}=1\\not=0"
The given series diverges by the Test for Divergence.
(ii)
The geometric series
is convergent if "|r|<1."
If "|r|\\geq1," the geometric series diverges.
We have "r=4x, x>0"
Then the given series converges for "0<x<\\dfrac{1}{4}" and diverges for "x\\geq \\dfrac{1}{4}."
Comments
Leave a comment