Solve
x ^ 2 * (d ^ 2 * y)/(dx) + x * (dy)/(dx) - 9y = 48x ^ 5
"x^2\\frac{d^2y}{dx^2}+x\\frac{dy}{dx}-9y=48x^5"
"D(D-1)y+Dy-9y=48x^5"
"(D^2-D+D-9)y=48x^5"
"(D^2-9)y=48x^5"
A.E;
"m^2-9=0\\implies m=3,-3"
Put "x=e^z\\therefore z=ln\\ x"
C.F="C_1e^{-3z}+C_2e^{3z}"
"P.I=\\frac{1}{(D^2-9)}\\cdot48e^{5z}"
"=\\frac{1*48}{((5)^2-9)}\\cdot e^{5z}=\\frac{48}{16}\\cdot e^{5z}"
"P.I=3e^{5z}"
Complete solution;
y=C.F+P.I
"y=C_1e^{-3z}+C_2e^{3z}+3e^{5z}"
"y=C_1e^{-3ln\\ x}+C_2e^{3ln\\ x}+3e^{5ln\\ x}"
"y=\\frac{C_1}{x^3}+C_2x^3+3x^{5}" , where C1 and C2 are arbitrary constants
Comments
Leave a comment