Solve the ODE xex2+ydx=ydy
"xe^{x^2+y}dx=dy\\\\\nxe^{x^2}e^ydx=dy\\\\\nxe^{x^2}dx=e^{-y}dy\\\\\n\\text{Integrating both side, we get}\\\\\nput x^2=t\\\\\n\\implies 2xdx=dt\\\\\n\\frac{1}{2}\\int e^tdt=\\int e^{-y}dy\\\\\n\\frac{1}{2}e^t+C=-e^{-y}\\\\\n\\text{This is the required answer.}"
Comments
Leave a comment