The given family of curves are
x 2 + y 2 = c x^{2}+y^{2}=c x 2 + y 2 = c
Differentiating w.r.t. x x x , we get
2 x + 2 y ( d y / d x ) = 0 x + y ( d y / d x ) = 0... ( i ) 2 x+2 y(d y / d x)=0\\
x+y(d y / d x)=0 ...(i) 2 x + 2 y ( d y / d x ) = 0 x + y ( d y / d x ) = 0... ( i )
Replacing
d y d x b y d y d x − tan 4 5 ∘ 1 + d y d x tan 4 5 ∘ = d y d x − 1 1 + d y d x \frac{d y}{d x}\ by \ \frac{\frac{d y}{d x}-\tan 45^{\circ}}{1+\frac{d y}{d x} \tan 45^{\circ}}=
\frac{\frac{d y}{d x}-1}{1+\frac{d y}{d x}} d x d y b y 1 + d x d y t a n 4 5 ∘ d x d y − t a n 4 5 ∘ = 1 + d x d y d x d y − 1
in Eq. (i), we get
x + y ( d y d x − 1 1 + d y d x ) = 0 x+y\left(\frac{\frac{d y}{d x}-1}{1+\frac{d y}{d x}}\right)=0 x + y ( 1 + d x d y d x d y − 1 ) = 0
x ( 1 + d y d x ) + y ( d y d x − 1 ) = 0 ⇒ ( x + y ) d y d x = ( y − x ) ⇒ d y d x = y − x y + x … ( i i ) \begin{aligned}
&x\left(1+\frac{d y}{d x}\right)+y\left(\frac{d y}{d x}-1\right)=0 \\
&\Rightarrow \quad(x+y) \frac{d y}{d x}=(y-x) \\
&\Rightarrow \quad \frac{d y}{d x}=\frac{y-x}{y+x} \quad \ldots(\mathrm{ii})
\end{aligned} x ( 1 + d x d y ) + y ( d x d y − 1 ) = 0 ⇒ ( x + y ) d x d y = ( y − x ) ⇒ d x d y = y + x y − x … ( ii )
which is a homogeneous differential equation.
Put y = v x ⇒ d y d x = v + x d v d x ⇒ v + x d v d x = v − 1 v + 1 ⇒ x d v d x = v − 1 v + 1 − v = v − 1 − v 2 − v v + 1 ⇒ ( v + 1 v 2 + 1 ) d v = − d x x \begin{aligned}
&\text { Put } y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\
&\Rightarrow \quad v+x \frac{d v}{d x}=\frac{v-1}{v+1} \\
&\Rightarrow \quad x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v^{2}-v}{v+1} \\
&\Rightarrow \quad\left(\frac{v+1}{v^{2}+1}\right) d v=-\frac{d x}{x}
\end{aligned} Put y = vx ⇒ d x d y = v + x d x d v ⇒ v + x d x d v = v + 1 v − 1 ⇒ x d x d v = v + 1 v − 1 − v = v + 1 v − 1 − v 2 − v ⇒ ( v 2 + 1 v + 1 ) d v = − x d x
Integrating, we get
1 2 log ∣ v 2 + 1 ∣ + tan − 1 v = c 1 − log x ⇒ log ∣ x 2 + y 2 ∣ + tan − 1 ( y x ) = c 1 \begin{aligned}
&\frac{1}{2} \log \left|v^{2}+1\right|+\tan ^{-1} v=c_1-\log x \\
&\Rightarrow \quad \log \left|x^{2}+y^{2}\right|+\tan ^{-1}\left(\frac{y}{x}\right)=c_1
\end{aligned} 2 1 log ∣ ∣ v 2 + 1 ∣ ∣ + tan − 1 v = c 1 − log x ⇒ log ∣ ∣ x 2 + y 2 ∣ ∣ + tan − 1 ( x y ) = c 1
Which is the required isogonal trajectories of the given family of curves.
Comments