Find the isogonal trajectories of the family of curves x2+y2=c if θ=45°.
The given family of curves are
"x^{2}+y^{2}=c"
Differentiating w.r.t. "x" , we get
"2 x+2 y(d y \/ d x)=0\\\\\n\nx+y(d y \/ d x)=0 ...(i)"
Replacing
"\\frac{d y}{d x}\\ by \\ \\frac{\\frac{d y}{d x}-\\tan 45^{\\circ}}{1+\\frac{d y}{d x} \\tan 45^{\\circ}}=\n\n\\frac{\\frac{d y}{d x}-1}{1+\\frac{d y}{d x}}"
in Eq. (i), we get
"x+y\\left(\\frac{\\frac{d y}{d x}-1}{1+\\frac{d y}{d x}}\\right)=0"
"\\begin{aligned}\n\n&x\\left(1+\\frac{d y}{d x}\\right)+y\\left(\\frac{d y}{d x}-1\\right)=0 \\\\\n\n&\\Rightarrow \\quad(x+y) \\frac{d y}{d x}=(y-x) \\\\\n\n&\\Rightarrow \\quad \\frac{d y}{d x}=\\frac{y-x}{y+x} \\quad \\ldots(\\mathrm{ii})\n\n\\end{aligned}"
which is a homogeneous differential equation.
"\\begin{aligned}\n\n&\\text { Put } y=v x \\Rightarrow \\frac{d y}{d x}=v+x \\frac{d v}{d x} \\\\\n\n&\\Rightarrow \\quad v+x \\frac{d v}{d x}=\\frac{v-1}{v+1} \\\\\n\n&\\Rightarrow \\quad x \\frac{d v}{d x}=\\frac{v-1}{v+1}-v=\\frac{v-1-v^{2}-v}{v+1} \\\\\n\n&\\Rightarrow \\quad\\left(\\frac{v+1}{v^{2}+1}\\right) d v=-\\frac{d x}{x}\n\n\\end{aligned}"
Integrating, we get
"\\begin{aligned}\n\n&\\frac{1}{2} \\log \\left|v^{2}+1\\right|+\\tan ^{-1} v=c_1-\\log x \\\\\n\n&\\Rightarrow \\quad \\log \\left|x^{2}+y^{2}\\right|+\\tan ^{-1}\\left(\\frac{y}{x}\\right)=c_1\n\n\\end{aligned}"
Which is the required isogonal trajectories of the given family of curves.
Comments
Leave a comment