Solve by the power series method d²y/dx² -y =0
Solution;
"\\frac{d^2y}{dx^2}-y=0...(1)"
Using power series;
"y=\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n""=a_0x^0+a_1x+a_2x^2+..."
Differentiate;
"y'=\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n-1}"
Differentiate further;
"y''=\\displaystyle\\sum_{n=2}^{\\infin}n(n-1)a_nx^{n-2}"
Rewrite as;
"y''=\\displaystyle\\sum_{n=0}^{\\infin}(n+2)(n+1)a_{n+2}x^n"
Substitute into equation (1);
"\\displaystyle\\sum_{n=0}^{\\infin}(n+2)(n+1)a_{n+2}x^n-\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"
Equate the coefficients to zero since "x\\neq0" ;
"(n+2)(n+1)a_{n+2}-a_n=0"
"a_{n+2}=\\frac{a_n}{(n+2)(n+1)}"
If;
n=0;
"a_0=a_2=0"
When n=1;
"a_3=\\frac{a_1}{3.2}"
When n=2;
"a_4=\\frac{a_2}{4.3}=0"
When n=3;
"a_5=\\frac{a_3}{5.3}"
Taking "a_1=1" ,we have;
"a_3=\\frac{1}{6}"
"a_5=\\frac{1}{6.5.3}=\\frac{1}{90}"
The power series solution is;
"y=x+\\frac16x^3+\\frac{1}{90}x^5+..."
Comments
Leave a comment