A tightly stretched string of length"l"has it's ends fastened at x=0andx=l. The midpoint of the string is taken the height h and released. find the initial displacement function at timet=0?
Solution;
Displacement of a string y(x,t) given by;
"\\frac{\\partial^2y}{\\partial t^2}=a^2\\frac{\\partial^2y}{\\partial x^2}" .....(1)
A suitable solution of (1) is given by;
"y(x,t)=(Acoslx+Bsinlx)(Ccoslat+Dsinlat).....(2)"
The boundary conditions are;
"(i)y(0,t)=0"
"(ii)y(l,t)=0"
"(iii)(\\frac{\\partial y}{\\partial t})_{t=0}=0"
(iv)
"(y(x,0) = \\begin{cases}\n \\frac{2hx}{l} &\\text{if } 0\\leq x\\leq\\frac l2 \\\\\n \\frac{2h(l-x)}{l} &\\text{if } \\frac l2\\leq x\\leq l\n\\end{cases}"
Using conditions (i) and (ii) in (2),we get;
A=0
"\\lambda=\\frac{n\u03c0}{l}"
Therefore;
"y(x,t)=Bsin\\frac{n\u03c0x}{l}[Ccos\\frac{n\u03c0at}{l}+Dsin\\frac{n\u03c0at}{l}]"
Differentiate to obtain;
"\\frac{\\partial y}{\\partial t}=Bsin\\frac{n\u03c0x}{l}(-Csin\\frac{n\u03c0at}{l}.\\frac{n\u03c0t}{l}+Dcos\\frac{n\u03c0at}{l}.\\frac{n\u03c0a}{l})"
Using conditions (iii) in the above equation we get;
"0=Bsin\\frac{n\u03c0x}{l}Dsin\\frac{n\u03c0a}{l}"
Since "B\\neq0" ,then D=0
Equation (2) reduces to;
"y(x,t)=Bsin\\frac{n\u03c0x}{l}Ccos\\frac{n\u03c0at}{l}"
Rewrite;
"y(x,t)=B_1sin\\frac{n\u03c0x}{l}cos\\frac{n\u03c0at}{l}....(4)"
(Note that B1=BC )
Using condition (iv) ,we get that;
"y(x,0)=\\displaystyle\\sum_{n=0}^{\\infin}B_nsin\\frac{n\u03c0x}{l}..\u2026(5)"
The RHS of equation (5) is the half range Fourier sine series of the LHS function, therefore;
"B_n=\\frac 2l\\int_0^lf(x)sin\\frac{n\u03c0x}{l}dx"
"=\\frac2l[\\int_0^{\\frac L2}\\frac{2hx}{l}sin\\frac{n\u03c0x}{l}dx+\\int_{\\frac l2}^0\\frac{2h(l-x)}{l}sin\\frac{n\u03c0x}{l}dx]"
Rewrite;
"=\\frac{4h}{l^2}[\\int_0^{\\frac L2}xsin\\frac{n\u03c0x}{l}dx+\\int_{\\frac L2}^0(l-x)sin\\frac{n\u03c0x}{l}dx]"
Integrating on the given limits;
"=\\frac{4h}{l^2}[[\\frac{-xcos\\frac{n\u03c0x}{l}}{\\frac{n\u03c0}{l}}+\\frac{sin \\frac{n\u03c0x}{l}}{\\frac{n^2\u03c0^2}{l^2}}]_0^{\\frac L2}+[\\frac{(x-l)cos\\frac{n\u03c0x}{l}}{\\frac{n\u03c0}{l}}+\\frac{sin\\frac{n\u03c0x}{l}}{\\frac{n^2\u03c0^2}{l^2}}]_{\\frac l2}^l]"
Applying the limits ;
"\\frac{4h}{l^2}[\\frac{sin\\frac{n\u03c0}{2}}{\\frac{n^2\u03c0^2}{l^2}}]=\\frac{4hsin\\frac{n\u03c0}{2}}{n^2\u03c0^2}"
Hence,the solution is;
"y(x)=\\displaystyle\\sum_{n=1}^{\\infin}\\frac{4hsin\\frac{n\u03c0}{2}}{n^2\u03c0^2}cos\\frac{n\u03c0at}{l}sin\\frac{n\u03c0x}{l}"
Comments
Leave a comment