Solve the following system of equations
dx/dt-dy/dt-2x-4y=t2
dx/dt+dy/dt-x-y=1
"\\mu(t)=e^{-t}"
"e^{-t}(x+y)'-e^{-t}(x+y)=e^{-t}"
"(e^{-t}(x+y))'=e^{-t}"
Integrate
"e^{-t}(x+y)=-e^{-t}+C_1"
"x+y=-1+C_1e^{t}"
"y=-x-1+C_1e^{t}"
"x'+x'-C_1e^{t}-2x+4x+4-4C_1e^{t}=t^2"
"2x'+2x=5C_1e^{t}+t^2-4"
"x'+x=\\dfrac{5}{2}C_1e^{t}+\\dfrac{1}{2}t^2-2"
"\\mu(t)=e^t"
"e^{t}x'+e^{t}x=\\dfrac{5}{2}C_1e^{2t}+\\dfrac{1}{2}e^{t}t^2-2e^{t}"
"d(e^{t}x)=\\dfrac{5}{2}C_1e^{2t}+\\dfrac{1}{2}e^{t}t^2-2e^{t}"
Integrate
"\\int e^{t}t^2dt=t^2e^t-2te^t+2e^{t}+C_3"
"e^{t}x=\\dfrac{5}{4}C_1e^{2t}+\\dfrac{1}{2}e^{t}t^2-e^{t}t+e^{t}-2e^{t}+C_2"
"x(t)=\\dfrac{5}{4}C_1e^{t}+\\dfrac{1}{2}t^2-t-1+C_2e^{-t}"
"y(t)=-\\dfrac{5}{4}C_1e^{t}-\\dfrac{1}{2}t^2+t+1+C_2e^{-t}-1+C_1e^{t}"
"y(t)=-\\dfrac{1}{4}C_1e^{t}-\\dfrac{1}{2}t^2+t+C_2e^{-t}"
Comments
Leave a comment