Solve the following differential equation
dx/dt+dy/dt-2x-4y=et
dx/dt+dy/dt-y=e4t
"x=-\\dfrac{3}{2}y-\\dfrac{1}{2}e^{t}+\\dfrac{1}{2}e^{4t}"
"x'=-\\dfrac{3}{2}y'-\\dfrac{1}{2}e^{t}+2e^{4t}"
"-\\dfrac{3}{2}y'-\\dfrac{1}{2}e^{t}+2e^{4t}+y'+3y+e^{t}-e^{4t}-4y=e^{t}"
"\\dfrac{1}{2}y'+y=-\\dfrac{1}{2}e^{t}+e^{4t}"
"y'+2y=-e^{t}+2e^{4t}"
"e^{2t}y'+2e^{2t}y=-e^{3t}+2e^{6t}"
"(e^{2t}y)'=-e^{3t}+2e^{6t}"
Integrate
"e^{2t}y=-\\dfrac{1}{3}e^{3t}+\\dfrac{1}{3}e^{6t}+C_1"
"y(t)=-\\dfrac{1}{3}e^{t}+\\dfrac{1}{3}e^{4t}+C_1e^{-2t}"
"x(t)=\\dfrac{1}{2}e^{t}-\\dfrac{1}{2}e^{4t}-\\dfrac{3C_1}{2}e^{-2t}-\\dfrac{1}{2}e^{t}+\\dfrac{1}{2}e^{4t}"
"y(t)=-\\dfrac{1}{3}e^{t}+\\dfrac{1}{3}e^{4t}+C_1e^{-2t}"
Comments
Leave a comment