Solve the following initial value problem
solution of heat equation:
"u(x,t)=\\sum B_n sin(n\\pi x\/L)e^{-k(n\\pi \/L)^2t}"
where
"B_n=\\frac{2}{L}\\int^L_0f(x)sin(n\\pi x\/L)dx"
"f(x)=u(x,0)"
we have:
"k=10,L=1"
then:
"f(x)=\\int^1_{-1}u_x(x,0)dx=\\int^1_{-1}(x+1)dx=2"
"B_n=4\\int^1_0sin(n\\pi x)dx=-\\frac{4}{\\pi n}cos(n\\pi x)|^1_0=-\\frac{4}{\\pi n}cos(n\\pi )+\\frac{4}{\\pi n}"
"B_n=0" for even n
"B_n=\\frac{8}{\\pi n}" for odd n
"u_n(x,t)=0" for even n
"u_n(x,t)=\\frac{8}{\\pi n}sin(n\\pi x)e^{-10(n\\pi )^2t}" for odd n
for "u(-1,t)=u(1,t)" :
"u(-1,t)=\\frac{8}{\\pi n}sin(-n\\pi )e^{-10(n\\pi )^2t}=0"
"u(1,t)=\\frac{8}{\\pi n}sin(n\\pi )e^{-10(n\\pi )^2t}=0"
for "u_x(-1,t)=u_x(1,t)" :
"u_x(x,t)=8cos(n\\pi x)e^{-10(n\\pi )^2t}"
"u_x(-1,t)=8cos(-n\\pi )e^{-10(n\\pi )^2t}=-8e^{-10(n\\pi )^2t}"
"u_x(1,t)=8cos(n\\pi )e^{-10(n\\pi )^2t}=-8e^{-10(n\\pi )^2t}"
Comments
Leave a comment