Question #223127

Express 2/y2-1 in partial fractions. Hence solve the differential equation 2xdy/dx +1 = y2 given that y= -3 when x= 1, expressing y explicitly in terms of x.



1
Expert's answer
2021-09-21T18:13:09-0400

Answer:-

It follows that 2y21=1y11y+1\frac{2}{y^2-1}=\frac{1}{y-1}-\frac{1}{y+1} is the expression in partial fractions.

Let us solve the differential equation 2xdydx+1=y2,\frac{2xdy}{dx} +1 = y^2,  given that y=3y= -3 when x=1.x= 1. This equation is equvalent to the equation 2xdydx=y21,\frac{2xdy}{dx} = y^2-1, and hencev 2dyy21=dxx.\frac{2dy}{y^2-1} = \frac{dx}x. It follows that 2dyy21=dxx,\int\frac{2dy}{y^2-1} = \int\frac{dx}x, and hence (1y11y+1)dy=lnx+lnC.\int(\frac{1}{y-1}-\frac{1}{y+1})dy= \ln|x|+\ln|C|. We conclude that lny1lny+1=lnCx,\ln|y-1|-\ln|y+1|=\ln|Cx|, that is lny1y+1=lnCx,\ln|\frac{y-1}{y+1}|=\ln|Cx|, and hence y1y+1=Cx.\frac{y-1}{y+1}=Cx. Taking into account that y=3y= -3 when x=1,x= 1, we conclude that C=313+1=2.C=\frac{-3-1}{-3+1}=2.

It follows that y1=2xy+2x,y-1=2xy+2x, and hence y2xy=2x+1.y-2xy=2x+1. Consequently, y=2x+112xy=\frac{2x+1}{1-2x} is the solution of the differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS